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Programs

Complex software

Software is composed of millions of lines of code

More multi-core architectures

More concurrent programs
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Concurrent Programs Logics

Assuming sequentially consistent memory model

HOARE 1975. Critical sections, abstract from time

OWICKI-GRIES 1976. Resource invariant, ghost variables

Rely-Guarantee, JONES 1983. Interferences

Concurrent Separation Logic, O’HEARN et al 2007

Combination of RG and CSL, VAFEIADIS et al 2007

Assuming weak memory models

Relaxed separation logic, VAFEIADIS et al 2013

Ghost, Procotols and Separation, VAFEIADIS et al 2014
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Existing Verification Tools

Concurrent C code verification

VCC (Owicki-Gries + ∼ Rely Guarantee + Ownership)

Verifast (Separation logic)

FRAMA-C

C code analysis

Modular architecture based on
plugins

Most analyses do not handle
concurrency
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Contribution

Code and specification transformation

Transform a concurrent code into a (simulating) sequential one

Experimented on a use case

Automated in a FRAMA-C plugin

Proved sound

Weak memory models

A constraint based solver for weak memory behaviors

Generate all candidate executions of a program

Determine for each one if it is allowed by a given model
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Equivalence of code must be proved

Do not alter specification meaning

Added specifications must always be automatically proved

December 6th , 2016 — A.Blanchard — p. 10



Program Verification Code and Specification Transformation Weak Memory Models Conclusion, Future Work

Overview I

Requirements

Equivalence of code must be proved

Do not alter specification meaning

Added specifications must always be automatically proved

December 6th , 2016 — A.Blanchard — p. 10



Program Verification Code and Specification Transformation Weak Memory Models Conclusion, Future Work

Overview I

Requirements

Equivalence of code must be proved

Do not alter specification meaning

Added specifications must always be automatically proved

December 6th , 2016 — A.Blanchard — p. 10



Program Verification Code and Specification Transformation Weak Memory Models Conclusion, Future Work

Overview I

Requirements

Equivalence of code must be proved

Do not alter specification meaning

Added specifications must always be automatically proved

December 6th , 2016 — A.Blanchard — p. 10



Program Verification Code and Specification Transformation Weak Memory Models Conclusion, Future Work

Overview II

Code transformation

Each local variable becomes a simulating array

Each instruction becomes a function

All functions are interleaved to simulate concurrency

We suppose an interleaving semantics⇒ SC memory model

Specifications transformation

Invariants are simulating functions pre/post conditions

Each variable is replaced by its simulation counterpart

December 6th , 2016 — A.Blanchard — p. 11



Program Verification Code and Specification Transformation Weak Memory Models Conclusion, Future Work

Case study – Micro-kernel code

Anaxagoros Microkernel Virtual
Memory Subsystem

Manages memory pages
Organized as hierarchy
Counts mappings to pages

We want to verify the function used
to update page tables

For any page, the indicated
number of mappings must be
greater or equal to the reality
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Case study – Verification results

For atomic low-level functions

ACSL specifications

Proof with FRAMA-C and WP

For the page update function (concurrent)

Specification and proof for sequential version

Simulation of concurrent executions
Weakening of the specification and proof:

Mostly automatic with FRAMA-C and WP
Auxiliary lemmas proved with COQ
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Case study – Simulation
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Case study – Benefits and Limitations

Verification results

Using FRAMA-C with WP

Mostly automatic thanks to SMT solvers (CVC4, Z3)

Completed by interactive proof using COQ

Limitations

Most of the work could have been done automatically

Known fixed-size arrays : fixed number of threads

Limited scaling expected
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CONC2SEQ – Features

CONC2SEQ role

Perform code transformation

Adapt specifications

Supported

Most C instructions

Thread local variables

Atomic operations (stdatomic.h)

Atomic blocks of code

Global invariants
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CONC2SEQ – Code transformation: variables

Original Code

int global;

int th_v thread_local;

void foo(){

int v;

}

Generated Code

int* pct;

int global;

int* tl_th_v;

int* foo_v;

/*@ axiomatic Validity_of_sim_vars {

predicate simulation{L} reads <sim ptrs>;

axiom all_simulations_separated{L}:

simulation ==>

\separated( <memory blocks/globals> );

axiom pct_is_valid{L}:

simulation ==>

( \forall integer j; valid_th(j) ==>

\valid(\at(pct,L)+j));

//...

} */

simulating variables separation

simulating variables validity
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CONC2SEQ – Code transformation: atomic instructions

Original Code

void foo(){

int v;

th_v = atomic_load(&global);

/*@ atomic \true; */{

v = 42;

global += v;

}

}

Generated Code

void foo_Call_1(uint th){

tl_th_v[th] = atomic_load(&global);

pct[th] = 2;

}

void foo_Atomic_2(uint th){

foo_v[th] = 42;

global += foo_v[th];

pct[th] = 3;

}
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CONC2SEQ – ACSL fold

New ACSL built-in to talk about threads

A logic fold operation on the value of a variable for all threads

Generate an axiomatic definition for each usage ...

... according to provided types and logic function.

Idea

thread_reduction(func, v, init)

⇔
func(sim_v[0], func(..., func(sim_v[NTH], init)))
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Soundness proof – Simplified language

mth ::= m(list x)block m ∈ Names
main ::= m(list e)
c ::= x := e local assignment

| x [y ] := e memory store
| x := y [e] memory load
| while e do block
| if e then block else block
| m(list e) call
| atomic block

v ::= n | l | b n ∈ Z, l ∈ L, b ∈ B,
e ::= v | x | op(ē) x ∈ X
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Soundness proof – Definitions: States and Traces

States

local environments P = {ρ : X ⇀ V}
heaps Σ = {σ : L⇀ N⇀ V}
global state (seq) γseq : Σ× Names × P × C
global state (‖) γ‖ : Σ× (T→ Names × P × C)

Traces

Actions:

a ::= τ | call m | return m | read l n v | write l n v

atomic a∗
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Soundness proof – Hypotheses

Memory

Statically allocated

Does not initially contain addresses

Forbidden actions

Nested atomic blocks

Thread spawning

Recursive functions
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Soundness proof – Function call/return

New simulating memory blocks

For each function we add an address from in the heap

It indicates the next instruction to perform in the caller

Call/Return simulation

Call simulation updates from for the executed thread

Return simulation puts the program counter to this value

December 6th , 2016 — A.Blanchard — p. 23



Program Verification Code and Specification Transformation Weak Memory Models Conclusion, Future Work

Soundness proof – Equivalences

State equivalence

σsim = σ‖ t σsim,X

σsim,X correctly represents every local environment

σsim,X correctly models every stacks

Trace equivalence

Forall action (t , a), we have a list of actions
(write ptid 0 t) :: l , where:

l = [] if a is τ
l = [a] if a is a memory access
l = [call m] if a is a call/return and m is its simulation
l is the list of actions of a, if a is an atomic block action.
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Soundness proof – Main result

Theorem

Forall (safe) p‖, ps its simulation, from states γ‖,init and γs,init

by simulation initialization, we reach γs,0 equivalent to γ‖,init

forall γs reachable from γs,0 with a trace ts, there exists γ‖
reachable from γ‖,init with a trace t‖ equivalent to ts.

forall γ‖ reachable from γ‖,init with a trace t‖, there exists
γs reachable from γs,0 with a trace ts equivalent to t‖.

Proof ideas

Sequential actions are deterministic, their translation too

Thread selection: just choose the same thread
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Formalization – Toward a COQ proof

Implemented up to known

Language and semantics

Transformation function

Next steps

Write equivalence in COQ

Perform the COQ proof
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Sequential Consistency (Lamport 1979)

A simple program

x :=0; y :=0

Thread 0
x := 1;
r0 := y;

Thread 1
y := 1;
r1 := x;

Possible results :

r0 = 1 ∧ r1 = 1

r0 = 0 ∧ r1 = 1

r0 = 1 ∧ r1 = 0

Impossible result :

r0 = 0 ∧ r1 = 0
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Existing dedicated tools

Herding cats (Alglave et al. 2014)

Generic framework for weak behaviors

Written in OCAML

Provides a language to specify memory models

JMMSolve (Schrijvers 2004) based on CCMM
(Saraswat 2004)

Program executions under Java Memory Model

Based on Concurrent Constraint-based Memory Machines

Written using Constraint Handling Rules (CHR)

December 6th , 2016 — A.Blanchard — p. 29



Program Verification Code and Specification Transformation Weak Memory Models Conclusion, Future Work

Prolog and CHR

Prolog

Declarative language for logic programming

Constraint Handling Rules

Declarative language for constraint programming

Maintains a store of constraints (∼ terms)

Handled by rules that will add or remove constraints
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Goals of our solver

To identify allowed executions

For a given parallel program

According to a given memory model

Additional goals

Possibility to add new memory models

Support of specific instructions
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Chosen approach

Generate all candidate executions

An execution is represented by ordering relations :

For each location l , a total ordering of every store to l (CO)

For each load, a store having written the read value (RF)

We combine all permutations of CO/RF using backtracking

Filter out forbidden executions

Apply model rules to deduce more ordering relations

Incoherent execution: an action must happen before itself
(which means that some relations exhibit a cycle)
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Express and derive relations with CHR

Ordering relations vs. CHR constraints

Relation CHR constraint

x := 0 CO−−→ x := 1 co(x := 0, x := 1)

x := 2 RF−−→ r := x rf(x := 2, r := x(2))

CHR rules to derive new relations :

rf(ST, LD), co(ST, ST2)⇒
fr(LD, ST2).

fr(LD, ST2), co(ST2, ST3)⇒
fr(LD, ST3).

ST

LD

ST2

ST3

rf
co

co

fr

fr
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Definition of a model : SC

Definition of a model

Define a new relation
as the union of
maintained relations

co(I,J) ==> sc(I,J).

rf(I,J) ==> sc(I,J).

fr(I,J) ==> sc(I,J).

po(I,J) ==> sc(I,J). r0 := y(0) r1 := x(0)

x := 1 y := 1

y := 0

x := 0

po po

co
co

rf

rf

fr
fr
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Validation

Available Models

SC, TSO, PSO and ARM (Almost finished)

Easy to extend new memory models

Program samples from Herd

Our solver has been tested on 18 examples of litmus programs
Message passing,

Basic uniproc relations,

...

We observe the same results found by Herd.
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Performance tests

Multiple message passing

Example Model #exec Herd CHR Solver

MP3

Generic 147 436 1.2s 3.3s
PSO 2 258 3.8s 6.4s
TSO 800 4.1s 3.2s
SC 678 5.5s 3.3s

MP4

Generic 255 000 000 1405s > 1h
PSO 516 030 > 1h 2796s
TSO 96 498 > 1h 752s
SC 81 882 > 1h 747s

Early pruning makes the solver efficient for “long” programs.
Our solver was not so hard to implement.
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Contribution

A method for the verification of concurrent code

Under sequentially consistent memory model

Based on code and specification transformation

Our method is

Successfully applied on a part of a microkernel [FMICS 2015]

Now automated in a Frama-C plugin [SCAM 2016]

Proved sound on paper, to be proved using COQ.

A CHR based solver for weak memory behaviors [CSTVA 2016]

It can identify executions allowed by a memory model

It has interesting performances on “big” programs
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Future Work

Make the plugin compatible with other plugins

Currently only WP is supported

Determine critical features

Make further experiments

Integrate function call in CONC2SEQ

Analyze more case studies

Add new features to our CHR solver

Complete ARM

Arithmetic and branching instructions

Combine CONC2SEQ and our CHR solver

Validate sequentialy consistent behavior using the solver
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Publications

Thank you for your attention !

Allan Blanchard, Nikolai Kosmatov, Matthieu Lemerre, and Frédéric Loulergue
A case study on formal verification of the Anaxagoros hypervisor paging system with
Frama-C
In International Workshop on Formal Methods for Industrial Critical Systems (FMICS
2015), LNCS, pages 15–30, Oslo, Norway, June 2015. Springer

Allan Blanchard, Nikolai Kosmatov, and Frédéric Loulergue
A CHR-Based Solver for Weak Memory Behaviors
In Proceedings of the 7th Workshop on Constraint Solvers in Testing, Verification
(CSTVA 2016), and Analysis co-located with The International Symposium on
Software Testing and Analysis (ISSTA 2016), Saarbrücken, Germany, July 17th,
2016., pages 15–22, 2016

Allan Blanchard, Nikolai Kosmatov, Matthieu Lemerre, and Frédéric Loulergue
Conc2Seq: A Frama-C Plugin for Verification of Parallel Compositions of C Programs
In 16th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2016), 2-3 October 2016, Raleigh, NC USA, 2016
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