
Conc2Seq: A Frama-C Plugin for
Verification of Parallel Compositions of C

Programs (SCAM 2016)

AFADL 2017

Allan Blanchard, Frédéric Loulergue, Nikolai Kosmatov,
Matthieu Lemerre

June 15th, 2017

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Table of Contents

1 Concurrent Program Analysis

2 From Concurrent to Sequential: Principle of the Transformation

3 Conclusion and Future Work

June 15th, 2017 — A. Blanchard — p. 2

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Dedicated Analysis

Most concurrent program analyzers are dedicated to this task
they implement a specific analysis
they are often hard to design

June 15th, 2017 — A. Blanchard — p. 3

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Sequential Code Analyzers

Sequential code analyzers work well
How can we bring them to concurrent code analysis?
Especially when we have many of them

The Frama-C code analysis platform (frama-c.com)

Deductive verification (WP)
Abstract Interpretation (Eva)
Runtime assertion checking (E-ACSL)
...

June 15th, 2017 — A. Blanchard — p. 4

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Simulating Code: Motivation

Idea 1: Intrinsically concurrent analysis tools
better integration
but hard to develop

Idea 2: Simulate concurrent programs by sequential ones
sequential analyzers will be able to treat it

June 15th, 2017 — A. Blanchard — p. 5

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Overview I

Requirements

Equivalence of code must be proved
Do not alter specification meaning
Added specifications must always be automatically proved

June 15th, 2017 — A. Blanchard — p. 6

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Overview I

Requirements

Equivalence of code must be proved
Do not alter specification meaning
Added specifications must always be automatically proved

June 15th, 2017 — A. Blanchard — p. 6

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Overview I

Requirements

Equivalence of code must be proved
Do not alter specification meaning
Added specifications must always be automatically proved

June 15th, 2017 — A. Blanchard — p. 6

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Overview I

Requirements

Equivalence of code must be proved
Do not alter specification meaning
Added specifications must always be automatically proved

June 15th, 2017 — A. Blanchard — p. 6

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Overview II

Code transformation

Each local variable becomes a simulating array
Each instruction becomes a function
All functions are interleaved to simulate concurrency

We suppose an interleaving semantics ⇒ SC memory model

Specifications transformation

Invariants are simulating functions pre/post conditions
Each variable is replaced by its simulation counterpart

June 15th, 2017 — A. Blanchard — p. 7

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Conc2Seq – Features

Conc2Seq role

Perform code transformation
Adapt specifications

Supported

Most C instructions
Thread local variables
Atomic operations (stdatomic.h)
Atomic blocks of code
Global invariants

June 15th, 2017 — A. Blanchard — p. 8

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Code transformation: variables

Original Code

int global;
int th_v thread_local;

void foo(){
int v;

}

Generated Code

int* pct;
int global;
int* tl_th_v;
int* foo_v;

/*@ axiomatic Validity_of_sim_vars {
predicate simulation{L} reads <sim ptrs>;

axiom all_simulations_separated{L}:
simulation ==>
\separated(<memory blocks/globals>);

axiom pct_is_valid{L}:
simulation ==>
(\forall integer j; valid_th(j) ==>

\valid(\at(pct,L)+j));
//...
} */

simulating variables separation

simulating variables validity

June 15th, 2017 — A. Blanchard — p. 9

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Code transformation: atomic instructions

Original Code

void foo(){
int v;
th_v = atomic_load(&global);

/*@ atomic \true; */{
v = 42;
global += v;

}
}

Generated Code

void foo_Call_1(uint th){
tl_th_v[th] = atomic_load(&global);
pct[th] = 2;

}

void foo_Atomic_2(uint th){
foo_v[th] = 42;
global += foo_v[th];
pct[th] = 3;

}

June 15th, 2017 — A. Blanchard — p. 10

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Code transformation: interleaving loop

Generated Code

void interleave (){
unsigned int th = some_thread ();
/*@ loop invariant : translated_global_invariant ;

loop invariant : simulation_global_invariant ; */
while (1) {

th = some_thread ();
switch (*(pc + th)) {
case -1: init_formals_foo (th); break ;
case 0: choose_call (th); break ;
case 1: foo_Call_1 (th); break ;
case 2: foo_Atomic_2 (th); break ;
case 3: foo_Return_3 (th); break ;
}

}
}

June 15th, 2017 — A. Blanchard — p. 11

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Specification Transformation

Global invariants

set as pre and post-condition of each simulating function
universal quantification on thread identifiers when needed

(Original) function contracts

preconditions are used to specify call initialization
postconditions are verified in return simulation

Simulation specification

invariant about the program counter

June 15th, 2017 — A. Blanchard — p. 12

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Conc2Seq – ACSL fold

New ACSL built-in to talk about threads

A logic fold operation on the value of a variable for all threads
Generate an axiomatic definition for each usage ...
... according to provided types and logic function.

Idea

thread_reduction(func, v, init)
∼

func(sim_v[0], func(..., func(sim_v[NTH], init)))

June 15th, 2017 — A. Blanchard — p. 13

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Let’s Sum Up

Concurrent program analysis by sequential code analyzers
based on a code transformation method
simulation of a concurrent program by a sequential one
implemented in the Conc2Seq plugin of Frama-C

We prove that the simulation is sound if the considered program
is sequentially consistent
does not contain recursion
does not allocate memory dynamically

June 15th, 2017 — A. Blanchard — p. 14

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Ongoing & Future Work

About the Frama-C plugin itself:
add function call simulation to Conc2Seq
add a SP calculus for local variables
add new specification primitives for concurrent behaviors
experiment on more case studies

The proof is currently a pen & paper proof
mechanized proof using Coq

Thank you ! Questions ?

June 15th, 2017 — A. Blanchard — p. 15

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Ongoing & Future Work

About the Frama-C plugin itself:
add function call simulation to Conc2Seq
add a SP calculus for local variables
add new specification primitives for concurrent behaviors
experiment on more case studies

The proof is currently a pen & paper proof
mechanized proof using Coq

Thank you ! Questions ?

June 15th, 2017 — A. Blanchard — p. 15

Université d’Orléans
Laboratoire d’Informatique Fondamentale d’Orléans — Bâtiment IIIA
Rue Léonard de Vinci
F-45067 ORLÉANS
http://www.univ-orleans.fr/lifo/

http://www.univ-orleans.fr/lifo/

	Concurrent Program Analysis
	Existing Analysis
	Proposal

	From Concurrent to Sequential: Principle of the Transformation
	Overview
	Conc2Seq: Features
	Code Transformation
	Specification Transformation

	Conclusion and Future Work
	Summary
	Future works

