i S———————S
4dv AN)
Centre Val de Loire II||||
UNIVERSITE Al

UNIVERSITE D'ORLEANS

CoONC2SEQ: A FRAMA-C PLUGIN FOR
VERIFICATION OF PARALLEL COMPOSITIONS OF C
ProGramMs (SCAM 2016)

AFADL 2017

ALLAN BLANCHARD, FREDERIC LOULERGUE, NIKOLAI KOSMATOV,
MATTHIEU LEMERRE

June 15, 2017

Bl NORTHERN -
Lo B ICH G SN =
o UNIVERSITY

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 00000000 000

Table of Contents

1 Concurrent Program Analysis
2 From Concurrent to Sequential: Principle of the Transformation

3 Conclusion and Future Work

June 15t", 2017 — A. Blanchard — p. 2

e

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
®00 00000000 ooo

Dedicated Analysis

Most concurrent program analyzers are dedicated to this task
B they implement a specific analysis

m they are often hard to design

June 15, 2017 — A. Blanchard — p. 3
s

From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

Concurrent Program Analysis
ooo

(o] le} 00000000

Sequential Code Analyzers

Sequential code analyzers work well
® How can we bring them to concurrent code analysis?

B Especially when we have many of them

The Frama-C code analysis platform (frama-c.com)

Software Analyzers

m Deductive verification (WP)

m Abstract Interpretation (Eva)

® Runtime assertion checking (E-ACSL)
|

June 15, 2017 — A. Blanchard — p. 4

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
coe 00000000 ooo

Simulating Code: Motivation

Idea 1: Intrinsically concurrent analysis tools
B better integration
B but hard to develop

Idea 2: Simulate concurrent programs by sequential ones

B sequential analyzers will be able to treat it

June 15t 2017 — A. Blanchard — p. 5
L

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 ®0000000 000

Overview |

Requirements

June 15t 2017 — A. Blanchard — p. 6
e

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 ®0000000 000

Overview |

Requirements

B Equivalence of code must be proved
E
E

June 15t 2017 — A. Blanchard — p. 6
e

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 ®0000000 000

Overview |

—

Requirements

B Equivalence of code must be proved
B Do not alter specification meaning
E

June 15t 2017 — A. Blanchard — p. 6

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 ®0000000 000

Overview |

—

Requirements

B Equivalence of code must be proved
B Do not alter specification meaning

B Added specifications must always be automatically proved

June 15t 2017 — A. Blanchard — p. 6

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 0®000000 000

Overview Il

Code transformation

B Each local variable becomes a simulating array
B Each instruction becomes a function

m All functions are interleaved to simulate concurrency

We suppose an interleaving semantics = SC memory model

Specifications transformation

E Invariants are simulating functions pre/post conditions

m Each variable is replaced by its simulation counterpart

June 15t 2017 — A. Blanchard — p. 7

L

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 00®00000 000

CONC2SEQ — Features

Conc2Seq role

B Perform code transformation

B Adapt specifications

Supported

Most C instructions

Thread local variables

B
E
B Atomic operations (stdatomic.h)
B Atomic blocks of code

E

Global invariants

June 15t 2017 — A. Blanchard — p. 8
L

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 000®0000 000

Code transformation: variables
.

Generated Code

int* pct;

int global;
int*x tl_th_v;
Original Code int* foo_v;

/*@ axiomatic Validity_of_sim_vars {
int global; predicate simulation{L} reads <sim ptrs>;
int th_v thread_local;

void foo(){ simulating variables separation

int v;

}

simulating variables validity

June 15t 2017 — A. Blanchard — p. 9
e

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
ooo 0000®000 ooo

Code transformation: atomic instructions

Original Code Generated Code
void foo(){
int v; void foo_Call_1(uint th){
th_v = atomic_load(&global); tl_th_v[th] = atomic_load(&global);
pct[th]l = 2;
}
/%@ atomic \true; */{ void foo_Atomic_2(uint th){
v = 42; foo_v[th] = 42;
global += v; global += foo_v[th];
¥ pct[th] = 3;
¥ }

June 15t", 2017 — A. Blanchard — p. 10

s

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work

000

00000e00 000

Code transformation: interleaving loop

Generated Code

void interleave (){

unsigned int th = some_thread();
/*@ loop invariant: translated_global_invariant ;
loop invariant: simulation_global_invariant ; */

while (1) {
th = some_thread();
switch (*(pc + th)) {

case -1: init_formals_foo(th); break;
case O0: choose_call(th); break;
case 1: foo_Call_1(th); break;
case 2: foo_Atomic_2(th); break;
case 3: foo_Return_3(th); break;
I

June 15t", 2017 — A. Blanchard — p. 11

e

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
000 00000080 000

Specification Transformation

I
Global invariants

B set as pre and post-condition of each simulating function

B universal quantification on thread identifiers when needed

(Original) function contracts

B preconditions are used to specify call initialization

B postconditions are verified in return simulation

Simulation specification

B invariant about the program counter

June 15t", 2017 — A. Blanchard — p. 12

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
ooo ©0000000e ooo

CoNC2SEQ — ACSL fold

New ACSL built-in to talk about threads

A logic fold operation on the value of a variable for all threads
B Generate an axiomatic definition for each usage ...

B ... according to provided types and logic function.

Idea

thread_reduction(func, v, init)

~

func(sim_v[0], func(..., func(sim_ v[NTH], init)))

June 15t", 2017 — A. Blanchard — p. 13
L

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
ooo 00000000 ®00

Let's Sum Up

Concurrent program analysis by sequential code analyzers
B based on a code transformation method
B simulation of a concurrent program by a sequential one

B implemented in the CONC2SEQ plugin of FRAMA-C

We prove that the simulation is sound if the considered program
B is sequentially consistent
m does not contain recursion

®m does not allocate memory dynamically

June 15t 2017 — A. Blanchard — p. 14
e

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
ooo 00000000 (ST Yo}

Ongoing & Future Work

About the FrRAMA-C plugin itself:
B add function call simulation to Conc2Seq
B add a SP calculus for local variables
B add new specification primitives for concurrent behaviors

B experiment on more case studies

The proof is currently a pen & paper proof

B mechanized proof using Coq

June 15t 2017 — A. Blanchard — p. 15

s

Concurrent Program Analysis From Concurrent to Sequential: Principle of the Transformation Conclusion and Future Work
ooo 00000000 (ST Yo}

Ongoing & Future Work

About the FrRAMA-C plugin itself:
B add function call simulation to Conc2Seq
B add a SP calculus for local variables
B add new specification primitives for concurrent behaviors

B experiment on more case studies

The proof is currently a pen & paper proof

B mechanized proof using Coq

Thank you ! Questions 7

June 15t 2017 — A. Blanchard — p. 15

Université d'Orléans

Laboratoire d'Informatique Fondamentale d'Orléans — Batiment IlIA
Rue Léonard de Vinc
F-45067 ORLEANS

http://uww.univ-orleans.fr/lifo/

http://www.univ-orleans.fr/lifo/

	Concurrent Program Analysis
	Existing Analysis
	Proposal

	From Concurrent to Sequential: Principle of the Transformation
	Overview
	Conc2Seq: Features
	Code Transformation
	Specification Transformation

	Conclusion and Future Work
	Summary
	Future works

