
Cybersecurity for IoT: Verify your

Software Today!

Allan Blanchard, Nikolai Kosmatov

(based on a tutorial prepared with Frédéric Loulergue)

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 2 / 48

Introduction Security in the IoT

Outline

Introduction
Security in the IoT
An overview of Frama-C
The Contiki operating system

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 3 / 48

Introduction Security in the IoT

Internet of Things

(c) Internet Security Buzz

I connect all devices
and services

I 46 billions devices by
2021

I transport huge
amounts of data

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 4 / 48

Introduction Security in the IoT

And Security?

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 5 / 48

Introduction Security in the IoT

And Security?

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 5 / 48

Introduction Security in the IoT

And Security?

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 5 / 48

Introduction Security in the IoT

And Security?

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 5 / 48

Introduction Security in the IoT

And Security?

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 5 / 48

Introduction An overview of Frama-C

Outline

Introduction
Security in the IoT
An overview of Frama-C
The Contiki operating system

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 6 / 48

Introduction An overview of Frama-C

Frama-C Open-Source Distribution

Framework for Analysis of C source code

http://frama-c.com

I offers a specification language called ACSL

I targets both academic and industrial usage

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 7 / 48

http://frama-c.com

Introduction An overview of Frama-C

Frama-C, a Collection of Tools

Several tools inside a single platform

I plugin architecture like in Eclipse

I over 20 plugins in the open-source distribution

I also close-source plugins, either at CEA (about 20) or outside

I a common kernel

I provides a uniform setting

I provides general services

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 8 / 48

Introduction An overview of Frama-C

Plugin Gallery

Plugins
Dynamic Analysis

PathCrawler

E-ACSL

StaDy

Sante
Ltest

Specification Generation

RTE
Aoräı

Formal Methods

Deductive Verification

WpJessie

Abstract Interpretation

Eva

Code Transformation

Semantic constant folding

Clang

Sparecode

Slicing

Browsing of unfamiliar code

Callgraph

Scope & Data-flow browsing

Occurrence
Impact

Metrics

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 9 / 48

Introduction An overview of Frama-C

Use the Right Tool for the Right Task

We may want to assure different degrees of confidence:

I absence of runtime errors or functional correctness

I partial/complete analysis (testing vs. verification)

Different tools require from us more or less work:

I Just provide the source code

I Configure tool parameters

I Provide code annotations

The higher the confidence is, the more information we have to provide

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 10 / 48

Introduction The Contiki operating system

Outline

Introduction
Security in the IoT
An overview of Frama-C
The Contiki operating system

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 11 / 48

Introduction The Contiki operating system

A lightweight OS for IoT

Contiki is a lightweight operating system for IoT

It provides a lot of features:

I (rudimentary) memory and process management

I networking stack and cryptographic functions

I ...

Typical hardware platform:

I 8, 16, or 32-bit MCU (little or big-endian),

I low-power radio, some sensors and actuators, ...

Note for security: there is no memory protection unit.
5 SicsthSense SICS Networked Embedded Systems Group5

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 12 / 48

Introduction The Contiki operating system

Contiki: Typical Applications
I IoT scenarios: smart cities, building automation, ...
I Multiple hops to cover large areas
I Low-power for battery-powered scenarios
I Nodes are interoperable and addressable (IP)

5 SicsthSense SICS Networked Embedded Systems Group5

Light bulbs
Thermostat

Power sockets
CO2 sensors

Door locks
Smoke detectors

…

Traffic lights
Parking spots
Public transport
Street lights
Smart metering
…

•

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 13 / 48

Verification of absence of runtime errors using Frama-C/Eva Runtime errors and the Eva plugin

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva
Runtime errors and the Eva plugin
Simple Example
An application to Contiki

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 14 / 48

Verification of absence of runtime errors using Frama-C/Eva Runtime errors and the Eva plugin

Runtime errors

Runtime errors in C are undefined behaviors:

I out-of-bound accesses,

I integer overflows,

I division by 0,

I invalid pointers

I . . .

They can raise important security issues

I For example, HeartBleed vulnerability (found in 2014 in OpenSSL)

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 15 / 48

Verification of absence of runtime errors using Frama-C/Eva Runtime errors and the Eva plugin

Value Analysis Overview

Compute possible values of variables at each program point

I an automatic analysis based on abstract interpretation

I computes a correct over-approximation

I reports alarms for potential runtime errors

I reports alarms for potentially invalid annotations

I can prove the absence of runtime errors

I graphical interface: displays the domains of each variable

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 16 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva
Runtime errors and the Eva plugin
Simple Example
An application to Contiki

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 17 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Example 1

Run Eva: frama-c-gui div1.c -val -main=f

int f (int a) {
int x, y;
int sum, result;
if(a == 0){

x = 0; y = 0;
}else{

x = 5; y = 5;
}
sum = x + y; // sum can be 0
result = 10/sum; // risk of division by 0
return result;
}

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 18 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Example 1
Run Eva: frama-c-gui div1.c -val -main=f

int f (int a) {
int x, y;
int sum, result;
if(a == 0){

x = 0; y = 0;
}else{

x = 5; y = 5;
}
sum = x + y; // sum can be 0
result = 10/sum; // risk of division by 0
return result;
}

Risk of division by 0 is detected, it is real.
A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 18 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Example 2

Run Eva: frama-c-gui div2.c -val -main=f

int f (int a) {
int x, y;
int sum, result;
if(a == 0){

x = 0; y = 5;
}else{

x = 5; y = 0;
}
sum = x + y; // sum cannot be 0
result = 10/sum; // no div. by 0
return result;
}

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 19 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Example 2
Run Eva: frama-c-gui div2.c -val -main=f

int f (int a) {
int x, y;
int sum, result;
if(a == 0){

x = 0; y = 5;
}else{

x = 5; y = 0;
}
sum = x + y; // sum cannot be 0
result = 10/sum; // no div. by 0
return result;
}

Risk of division by 0 is detected, but it is a false alarm.
A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 19 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Eva Parameterization

I Eva is automatic, but can be imprecise due to over-approximation

I a fine-tuned parameterization for a trade-off precision / efficiency

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 20 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Example 2, cont’d

Run Eva: frama-c-gui div2.c -val -main=f -slevel 2

int f (int a) {
int x, y;
int sum, result;
if(a == 0){

x = 0; y = 5;
}else{

x = 5; y = 0;
}
sum = x + y; // sum cannot be 0
result = 10/sum; // no div. by 0
return result;
}

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 21 / 48

Verification of absence of runtime errors using Frama-C/Eva Simple Example

Example 2, cont’d
Run Eva: frama-c-gui div2.c -val -main=f -slevel 2

int f (int a) {
int x, y;
int sum, result;
if(a == 0){

x = 0; y = 5;
}else{

x = 5; y = 0;
}
sum = x + y; // sum cannot be 0
result = 10/sum; // no div. by 0
return result;
}

Absence of division by 0 is proved, no false alarm.
A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 21 / 48

Verification of absence of runtime errors using Frama-C/Eva An application to Contiki

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva
Runtime errors and the Eva plugin
Simple Example
An application to Contiki

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 22 / 48

Verification of absence of runtime errors using Frama-C/Eva An application to Contiki

Overview of the aes-ccm Modules

I Critical! – Used for communication security
I end-to-end confidentiality and integrity

I Advanced Encryption Standard (AES): a symmetric encryption algo.
I AES replaced in 2002 Data Encryption Standard (DES)

I Modular API – independent from the OS
I Two modules:

I AES-128
I AES-CCM* block cypher mode
I A few hundreds of LoC

I High complexity crypto code
I Intensive integer arithmetics
I Intricate indexing
I based on multiplication over finite field GF(28)

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 23 / 48

Verification of absence of runtime errors using Frama-C/Eva An application to Contiki

Example 3

We analyze two versions of a part of the aes module

I frama-c-gui aes1.c -val

I frama-c-gui aes2.c -val

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 24 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP
Functional properties and the WP plugin
An application to Contiki

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 25 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

Functional properties

With Eva, we can prove that no bad things can happen

Can we go further and prove that good things will eventually happen?

Yes!

I we have to define what we mean by “good things”

I we still have to show that no bad things happen

Legend: Bad things= runtime errors, good things= expected behavior

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 26 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

Functional properties

With Eva, we can prove that no bad things can happen

Can we go further and prove that good things will eventually happen?

Yes!

I we have to define what we mean by “good things”

I we still have to show that no bad things happen

Legend: Bad things= runtime errors, good things= expected behavior

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 26 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

Objectives of Deductive Verification

Rigorous, mathematical proof of semantic
properties of a program

I functional properties

I absence of runtime errors

I termination

Requires some extra work from us to define
the expected properties...

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 27 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

WP plugin

I Modular deductive verification (function by function)

I Input: a program and its specification written in ACSL
I If the proof succeeds, the program respects the given specification

I Does it mean that the program is correct?

I NO! If the specification is wrong, the program can be wrong!

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 28 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

WP plugin

I Modular deductive verification (function by function)

I Input: a program and its specification written in ACSL
I If the proof succeeds, the program respects the given specification

I Does it mean that the program is correct?
I NO! If the specification is wrong, the program can be wrong!

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 28 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

Function contracts

I Goal: specification of imperative functions
I Approach: give assertions (i.e. properties) about the functions

I Precondition is supposed to be true on entry (ensured by the caller)
I Postcondition must be true on exit (ensured by the function)

I Nothing is guaranteed when the precondition is not satisfied

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 29 / 48

Deductive verification using Frama-C/WP Functional properties and the WP plugin

Example 1
Run WP: frama-c-gui -wp -wp-rte all zeros.c

/∗@ requires n>=0 && \valid(t+(0..n−1));
assigns \nothing;
ensures \result != 0 <==>

(\forall integer j; 0 <= j < n ==> t[j] == 0);
∗/
int all zeros(int t[], int n) {

int k;
/∗@ loop invariant 0 <= k <= n;

loop invariant \forall integer j; 0<=j<k ==> t[j]==0;
loop assigns k;
loop variant n−k;

∗/
for(k = 0; k < n; k++)

if (t[k] != 0)
return 0;

return 1;
}

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 30 / 48

Deductive verification using Frama-C/WP An application to Contiki

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP
Functional properties and the WP plugin
An application to Contiki

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 31 / 48

Deductive verification using Frama-C/WP An application to Contiki

Overview of the memb Module

I No dynamic allocation in Contiki
I to avoid fragmentation of memory in long-lasting systems

I Memory is pre-allocated (in arrays of blocks) and attributed on
demand

I The management of such blocks is realized by the memb module

The memb module API allows the user to

I initialize a memb store (i.e. pre-allocate an array of blocks),

I allocate or free a block,

I check if a pointer refers to a block inside the store

I count the number of allocated blocks

We specified and verified the memb module with Frama-C/WP

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 32 / 48

Deductive verification using Frama-C/WP An application to Contiki

The textual contract of memb alloc

1. If the store is full, then leave it intact and return NULL (lines 12–15)

2. If the store has a free block, then return a free block b such that:
I b is properly aligned in the block array (line 8)
I b was marked as free, and is now marked as allocated (line 7)
I b is valid, i.e. points to a valid memory space of a block size that can

be safely read or written to (line 10)
I the states of the other blocks have not changed (line 9)
I the number of free blocks is decremented (line 11)

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 33 / 48

Deductive verification using Frama-C/WP An application to Contiki

The contract of memb alloc

/∗@
requires valid memb(m);
ensures valid memb(m);
assigns m−>count[0 .. (m−>num − 1)];
behavior free found:

assumes ∃Zi; 0 ≤ i <m−>num ∧m−>count[i] ==0;
ensures ∃Zi; 0 ≤ i <m−>num ∧\old(m−>count[i]) ==0 ∧m−>count[i] ==1 ∧
\result ==(char∗) m−>mem + (i ∗ m−>size) ∧
∀Zj; (0 ≤ j <i ∨i <j <m−>num) ⇒m−>count[j] ==\old(m−>count[j]);

ensures \valid((char∗) \result + (0 .. (m−>size − 1)));
ensures memb numfree(m) ==\old(memb numfree(m)) − 1;
ensures memb allocated(m, \result);

behavior full:
assumes memb full(m);
ensures ∀Zi; 0 ≤ i <m−>num ⇒m−>count[i] ==\old(m−>count[i]);
ensures memb numfree(m) ==\old(memb numfree(m));
ensures \result ==NULL;

complete behaviors;
disjoint behaviors;
∗/
void ∗memb alloc(struct memb ∗m);

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 34 / 48

Deductive verification using Frama-C/WP An application to Contiki

Other modules of Contiki analyzed with WP

Absence of security vulnerabilities coming from runtime errors :

I for several low-level modules of the core part of Contiki

Functional verification of the list module:

I a buggy function found and fixed

I different verification techniques studied and compared

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 35 / 48

Runtime Verification using Frama-C/E-ACSL Dynamic analysis and E-ACSL

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL
Dynamic analysis and E-ACSL
An application to Contiki

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 36 / 48

Runtime Verification using Frama-C/E-ACSL Dynamic analysis and E-ACSL

Completeness

A complete static analysis (for all inputs) can be hard and costly

A partial, dynamic analysis (for selected inputs) is usually easier

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 37 / 48

Runtime Verification using Frama-C/E-ACSL Dynamic analysis and E-ACSL

Objectives of E-ACSL

I E-ACSL is a runtime assertion checking tool
I detect runtime errors
I detect annotation failures
I treat a concrete program run (i.e. with concrete inputs)

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 38 / 48

Runtime Verification using Frama-C/E-ACSL Dynamic analysis and E-ACSL

E-ACSL plugin at a Glance

http://frama-c.com/eacsl.html

I Main idea: convert annotations into C code

int div(int x, int y) {
/*@ assert y-1 != 0; */
return x / (y−1);
}

int div(int x, int y) {
/*@ assert y-1 != 0; */
e acsl assert(y-1 != 0);
return x / (y−1);
}

E-ACSL

I The real translation is more complex than it may look

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 39 / 48

http://frama-c.com/eacsl.html

Runtime Verification using Frama-C/E-ACSL Dynamic analysis and E-ACSL

E-ACSL plugin at a Glance

http://frama-c.com/eacsl.html

I Main idea: convert annotations into C code

int div(int x, int y) {
/*@ assert y-1 != 0; */
return x / (y−1);
}

int div(int x, int y) {
/*@ assert y-1 != 0; */
e acsl assert(y-1 != 0);
return x / (y−1);
}

E-ACSL

I The real translation is more complex than it may look

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 39 / 48

http://frama-c.com/eacsl.html

Runtime Verification using Frama-C/E-ACSL An application to Contiki

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL
Dynamic analysis and E-ACSL
An application to Contiki

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 40 / 48

Runtime Verification using Frama-C/E-ACSL An application to Contiki

E-ACSL applied to the AES module
Remember our previous analysis on aes2.c ...

We can check this at runtime:

$ e-acsl-gcc.sh aes2.c --rte=all -c -Omonitored-aes2

$./monitored-aes2

$./monitored-aes2.e-acsl

Assertion failed at line 37 in function aes_128_set_key.

The failing predicate is:

rte: mem_access: \valid_read(key + i).

Abandon (core dumped)

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 41 / 48

Runtime Verification using Frama-C/E-ACSL An application to Contiki

Possible Usages in Combination with Other Tools

I check properties unproved by static analyzers (e.g. Eva, WP)

I check the absence of runtime errors

I check memory consumption and violations (use-after-free)

I help testing tools to check properties which are not easy to observe

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 42 / 48

Conclusion

Outline

Introduction

Verification of absence of runtime errors using Frama-C/Eva

Deductive verification using Frama-C/WP

Runtime Verification using Frama-C/E-ACSL

Conclusion

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 43 / 48

Conclusion

Conclusion

Frama-C allows us to:

I verify the absence of runtime errors with Eva

I formally specify functional properties with ACSL

I prove a program respects its specification with WP

I verify annotations at runtime or detect runtime errors with E-ACSL

All of these and much more inside Frama-C

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 44 / 48

Conclusion

Conclusion

IoT software is critical

I Connected devices are used in many critical domains today

I Their usage is rapidly expanding

Formal verification tools can be helpful

I Verification tools have become more efficient in practice: faster
hardware, more memory...

I Formal methods are successfully used in several critical domains
(avionics, energy, rail,...)

I Applying formal methods improves software quality in 92% of projects
Source: Formal Methods Practice and Experiments, ACM Comp.Surveys

Verify your IoT software today!

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 45 / 48

Conclusion

Further reading

User manuals:

I user manuals for Frama-C and its different analyzers, on the website:
http://frama-c.com

About the use of WP:

I Introduction to C program proof using Frama-C and its WP plugin
Allan Blanchard
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

I ACSL by Example
Jochen Burghardt, Jens Gerlach
https://github.com/fraunhoferfokus/acsl-by-example

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 46 / 48

http://frama-c.com
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf
https://github.com/fraunhoferfokus/acsl-by-example

Conclusion

Further reading
Tutorial papers:

I A. Blanchard, N. Kosmatov, and F. Loulergue. A Lesson on Verification of
IoT Software with Frama-C (HPCS 2018)

I on deductive verification:
N. Kosmatov, V. Prevosto, and J. Signoles. A lesson on proof of programs
with Frama-C (TAP 2013)

I on runtime verification:
I N. Kosmatov and J. Signoles. A lesson on runtime assertion checking

with Frama-C (RV 2013)
I N. Kosmatov and J. Signoles. Runtime assertion checking and its

combinations with static and dynamic analyses (TAP 2014)

I on test generation:
N. Kosmatov, N. Williams, B. Botella, M. Roger, and O. Chebaro. A lesson
on structural testing with PathCrawler-online.com (TAP 2012)

I on analysis combinations:
N. Kosmatov and J. Signoles. Frama-C, A collaborative framework for C
code verification: Tutorial synopsis (RV 2016)

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 47 / 48

Conclusion

Further reading

On the verification of Contiki:

I on the MEMB module:
F. Mangano, S. Duquennoy, and N. Kosmatov. A memory allocation module
of Contiki formally verified with Frama-C. A case study (CRiSIS 2016)

I on the AES-CCM* module:
A. Peyrard, S. Duquennoy, N. Kosmatov, and S. Raza. Towards formal
verification of Contiki: Analysis of the AES–CCM* modules with Frama-C
(RED-IoT 2017)

I on the LIST module:

I A. Blanchard, N. Kosmatov, and F. Loulergue. Ghosts for lists: A
critical module of contiki verified in Frama-C (NFM 2018)

I F. Loulergue, A. Blanchard, and N. Kosmatov. Ghosts for lists: from
axiomatic to executable specifications (TAP 2018)

I A. Blanchard, N. Kosmatov, and F. Loulergue. Logic against Ghosts:
Comparison of Two Proof Approaches for a List Module (SAC 2019)

A. Blanchard, N. Kosmatov Cybersecurity for IoT: Verify your Software Today! FIC 2019 48 / 48

