
FMICS 2015 — June 22, 2015

A Case Study on Formal
Verification of the
Anaxagoros Paging
System with Frama-C

Allan Blanchard Nikolai Kosmatov

Matthieu Lemerre Frédéric Loulergue



CONTENTS�

�

�




Anaxagoros Virtual Memory
Formal Verification
Results
Conclusion

CEA — June 22, 2015 — p. 2



Anaxagoros Virtual Memory

Anaxagoros Microkernel

Clouds mutualize physical
resources between users

Safety and security are crucial

Anaxagoros

Secure microkernel hypervisor
Developped at CEA LIST by
Matthieu Lemerre
Designed for resource isolation
and protection

Virtual memory system is a key
module to ensure isolation

CEA — June 22, 2015 — p. 3



Anaxagoros Virtual Memory

Anaxagoros Microkernel

Clouds mutualize physical
resources between users

Safety and security are crucial

Anaxagoros

Secure microkernel hypervisor
Developped at CEA LIST by
Matthieu Lemerre
Designed for resource isolation
and protection

Virtual memory system is a key
module to ensure isolation

CEA — June 22, 2015 — p. 3



Anaxagoros Virtual Memory

Anaxagoros Microkernel

Clouds mutualize physical
resources between users

Safety and security are crucial

Anaxagoros

Secure microkernel hypervisor
Developped at CEA LIST by
Matthieu Lemerre
Designed for resource isolation
and protection

Virtual memory system is a key
module to ensure isolation

CEA — June 22, 2015 — p. 3



Anaxagoros Virtual Memory

Virtual Memory Subsystem

Organizes program address
spaces

Creates a hierarchy of pages
Allows sharing when needed

Controls accesses and
modifications to the pages

Only owners can access their
pages
Types of the pages limit
possible actions

Counts mappings, references,
to each page

CEA — June 22, 2015 — p. 4



Formal Verification

Verified function

CEA — June 22, 2015 — p. 5



Formal Verification

Verified function

CEA — June 22, 2015 — p. 5



Formal Verification

Verified function

CEA — June 22, 2015 — p. 5



Formal Verification

Verified function

CEA — June 22, 2015 — p. 5



Formal Verification

Verified function

CEA — June 22, 2015 — p. 5



Formal Verification

Verified memory invariant

Maintain the count of mappings on pages

Each page descriptor contains a counter that must be equal to
the number of mappings to the described page
Assuming Occv represents the number of occurrences of v in
all pagetables, we want to prove :

∀e, validpage(e)⇒ Occe = mappings[e] ≤ MAX

CEA — June 22, 2015 — p. 6



Formal Verification

Concurrency issues

Pages might be modified by different processus simultaneously
It creates a gap between the actual number of mappings and
the counter

New invariant :

∀e, validpage(e)⇒ Occe ≤ mappings[e] ≤ MAX

and more precisely,

∀e, validpage(e)⇒ ∃k . k ≥ 0 ∧ Occe + k = mappings[e] ≤ MAX

This k is actually the number of threads that have introduced a
difference in the counter, difference of at most 1.

CEA — June 22, 2015 — p. 7



Formal Verification

Frama-C and WP plugin

Our verification is conducted with Frama-C :

A framework for analysis of C programs
Provides a specification language called ACSL
We use the WP plugin for deductive proof

Frama-C and WP do not support concurrency

We simulate concurrent executions
We prove the invariant on the simulation

CEA — June 22, 2015 — p. 8



Formal Verification

Simulation of the concurrency

We model the execution context, we have for each thread :

global arrays representing the value of each local variable
a global array representing its position in the execution

We simulate every atomic step with a function taking in
parameter the thread we want to execute

We create an infinite loop that randomly chooses a thread
and makes it perform a step of execution according to its
current position

CEA — June 22, 2015 — p. 9



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Formal Verification

Simulation of the concurrency

CEA — June 22, 2015 — p. 10



Results

Parts of the module verified

For low-level functions, we conducted a “classic” verification

Specification with ACSL
Automatic proof with WP and SMT Solver : CVC4/Z3

For the concurrent function used to change pagetables :

First specification and proof for sequential version
Weakening of the invariant for concurrency
Creation and specification of the simulation and proof

CEA — June 22, 2015 — p. 11



Results

Some interactive proofs

Occurrence counting in arrays relies on :

Axiomatization of a simple recursive counting method
Lemmas that define properties about this function

These lemmas could not be proved automatically

the proof is done in Coq by extracting them from WP

CEA — June 22, 2015 — p. 12



Results

Lessons Learned, Limitations and Benefits

Ability to treat concurrent programs

With a tool that originally does not handle parallelism
Proof done mostly automatically
Verification of properties in isolation

Scalability

By-hand simulation is tedious and error prone
Could perfectly be automized
Need for specification mean for concurrent behaviors

CEA — June 22, 2015 — p. 13



Results

Our approach is valid as long as :

This function is the only function allowed to modify
pagetables

Actually, one another function is allowed to modify them,
It could be added to the analysis

The program respects an interleaving semantics

In our case, it is true,
In the general case, the simulation would not be correct

CEA — June 22, 2015 — p. 14



Conclusion

We performed the deductive verification of a concurrent program
in Frama-C that originally do not deal with it

This method is quite simple

Automatic proof saves a lot of time

We still need some improvement :

Simulation could be automatically generated

The specification language could include concurrency material

We could perform the verification without simulation

CEA — June 22, 2015 — p. 15



Conclusion

We performed the deductive verification of a concurrent program
in Frama-C that originally do not deal with it

This method is quite simple

Automatic proof saves a lot of time

We still need some improvement :

Simulation could be automatically generated

The specification language could include concurrency material

We could perform the verification without simulation

Thank you for your attention !

CEA — June 22, 2015 — p. 15



Thank you for your attention

Direction de la Recherche Technologique
Département d’Ingénierie des Logiciels et des Systèmes
Laboratoire de Sûreté des Logiciels

Commissariat à l’énergie atomique et aux énergies alternatives
Institut Carnot CEA LIST

Centre de Saclay — 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial — RCS Paris B 775 685 019


	Anaxagoros Virtual Memory
	Formal Verification
	Results
	Conclusion

