
No Smoke without Fire:
Detecting Speci�cation Inconsistencies with

Frama-C/WP

Allan Blanchard1[0000−0001−7922−4880], Loïc Correnson1[0000−0001−6554−404X],
Adel Djoudi2[0000−0002−8238−6490], and Nikolai Kosmatov3[0000−0003−1557−2813]

1 Université Paris-Saclay, CEA, List, Palaiseau, France
{allan.blanchard,loic.correnson}@cea.fr

2 Thales Digital Identity & Security, Meudon, France
3 Thales Research & Technology, Palaiseau, France
{adel.djoudi,nikolai.kosmatov}@thalesgroup.com

Abstract. Deductive veri�cation provides a proof that, under the pro-
vided pre-conditions, each terminating execution of a given function sat-
is�es the stated post-conditions. In general, pre- and post-conditions are
expressed in a logical speci�cation language and typically rely on theories
including abstract de�nitions, axioms and lemmas. As they are written
by humans, errors may be introduced into speci�cations. Some errors can
be detected when the proof fails, but sometimes, they remain unnoticed
due to misleading proofs: most of the program may become dead code
under the provided pre-conditions, or the proof may succeed because of
inconsistencies in hypotheses and axioms. In this tool paper, we explore
how to detect such unwanted situations by using deductive veri�cation
techniques and describe the smoke test mechanism in Frama-C/WP, a
popular deductive veri�er for C code. We show that, while the intuitive
idea is simple, making it practical requires optimizations to scale up,
and report on experiments with critical industrial code. Although our
method is based on proof techniques, it is not complete and is similar to
testing. In the end, can we ever be sure that our programs are proved
well enough?

1 Introduction

Deductive veri�cation [14] is aimed at proving that a given program respects its
formal speci�cation. The speci�cation is an essential ingredient of the process: if
the speci�cation is wrong, the whole veri�cation is of no interest. Similarly, too
strong speci�cation requirements might silently eliminate large portions of the
code, dramatically reducing the e�ective scope of the veri�cation claim.

The purpose of this paper is to describe a mechanism for tracking inconsistent
speci�cations and unwanted dead code that we implemented in Frama-C/WP [6],
a mature and popular deductive veri�cation tool for C programs annotated in
ACSL speci�cation language [7]. It is based on so-called smoke tests, which are

2 Allan Blanchard et al.

speci�c annotations generated by WP such that their proof would demonstrate
the presence of such unwanted situations.4 Such annotations typically assert
false at speci�c program points. Then, an unwanted situation can be revealed
if the corresponding assertion of false is proved. Such an assertion of false
is provable only if the corresponding program point is not reachable by a valid
execution path5, i.e. an execution path leading to this program point such that all
annotations met on this path are satis�ed. In this way, detecting inconsistencies
can be reduced to the detection of program points that are unreachable (or
dead) from the point of view of a deductive veri�cation tool. Notice that this
unreachability property is larger than the usual notion of dead code � when a
program point is not reachable by any execution path. In the following sections,
when talking from the point of view of WP, unreachable (dead) code will be
understood in this broader sense.

This mechanism is potentially capable to detect various kinds of inconsis-
tencies and dead code � but only those explicitly tracked, and only if the
prover manages to prove the corresponding annotation. By essence, this ap-
proach amounts to testing whether the tracked unwanted situations occur or
not, without any guarantee to detect them, nor any guarantee that there is no
other sources of inconsistency in user speci�cations.

This tool paper describes the design and implementation of the smoke tests
feature of Frama-C/WP, optimizations to make this mechanism more scalable
and more practical, and presents some evaluation results on industrial code.

2 Tracked Inconsistencies

Speci�cations can contain various kinds of errors. They are often related to in-
consistencies among the hypotheses that form the context of the proof. The
context typically includes pre-conditions of the entry point function, global vari-
ables and global properties such as axioms. Sometimes, the user con�guration
of the deductive veri�cation engine can also introduce additional hypotheses in
the proof context, for instance, global assumptions regarding the memory model
or the absence of speci�c kinds of runtime errors. These hypotheses might also
interfere with the speci�cation or with the code in a misleading way.

In this section, we explore di�erent situations where inconsistencies in spec-
i�cations might remain unnoticed during modular deductive veri�cation. Most
examples presented in the article are simple enough to be fully and trivially
veri�ed by Frama-C/WP [6,17] with a simple command frama-c myfile.c -wp.
However, all the presented examples are actually doomed by speci�cation errors.
We also show that all these situations are trivially revealed by WP thanks to
smoke tests by simply adding the option -wp-smoke-tests to the command.6

4 some of which can be justi�ed in some speci�c cases (e.g. by a partial veri�cation
scope, architecture assumptions), but should not remain unnoticed (cf. Sect. 2.7).

5 See Sect. 3.3 for a formal de�nition of a valid execution path.
6 All examples were run with Frama-C 29 (Copper) and Alt-Ergo 2.5.3 public releases.
Terminal outputs are shortened or omitted, and only focus on relevant parts.

No Smoke without Fire: Detecting Speci�cation Inconsistencies 3

2.1 Pre-condition Errors

Inconsistent pre-conditions can be revealed as they can never be proved at their
call sites. Indeed, WP checks that pre-conditions are valid at every call site. But
for root functions in the call graph, there is no way to check this property. For
instance, consider the following program (say, in �le requires.c):

/*@ requires x < 0 ;
requires x > 0 ;
ensures \result == 42 ; */

int f(int x){ return x ; }

The post-condition is obviously wrong: there is no reason for the result of func-
tion f to be equal to 42. However, this program is fully veri�ed by WP:

> frama -c requires.c -wp
[wp] Proved goals: 3 / 3

Indeed, the two pre-conditions of f are mutually exclusive: it is not possible to
call it with valid pre-conditions. Hence, the program is valid because there is no
valid call context for it. Fortunately, WP with smoke tests trivially detects this
misleading speci�cation:

> frama -c requires.c -wp -wp -smoke -tests
[wp] [Failed] (Doomed) typed_f_wp_smoke_default_requires (Qed)
[wp] requires.c:4: Warning: Failed smoke -test
[wp] Proved goals: 3 / 4
[wp] Smoke Tests: 0 / 1

When a function's contract is split into di�erent ACSL behaviors, inconsis-
tencies may also occur among a behavior's assumptions, or between the default
behavior pre-conditions and the assumptions of a speci�c behavior. For instance,
consider the following program (�le assumes.c):

/*@ requires x < 0 ;
behavior Positive:

assumes x > 0 ;
ensures \result == 42 ; */

int f(int x){ return x ; }

Here also, the program is fully veri�ed by WP, although its Positive behavior
is doomed since its assumption is inconsistent with the function pre-condition,
a situation trivially detected by WP smoke tests:

> frama -c assumes.c -wp
[wp] Proved goals: 3 / 3

> frama -c assumes.c -wp -wp -smoke -tests
[wp] [Failed] (Doomed) typed_f_wp_smoke_Positive_assumes (Qed)
[wp] assumes.c:5: Warning: Failed smoke -test
[wp] Proved goals: 4 / 5
[wp] Smoke Tests: 1 / 2

Detecting errors at the level of pre-conditions naturally extends to inconsis-
tencies with respect to the global context. Consider the example (�le axioms.c):

/*@ axiomatic Ax {
logic integer A reads \nothing ;
axiom Positive: A >= 0 ;

} */

4 Allan Blanchard et al.

/*@ requires A < 0 ;
ensures \result == 42 ; */

int f(void){ return 0 ; }

The ACSL axiomatic block introduces logical variable A assumed to be positive.
This function is also proven valid by WP, while, contrary to its post-condition,
it never returns 42. Indeed, its pre-condition is doomed: it is inconsistent with
the global assumption on logic parameter A, as revealed by WP smoke tests:

> frama -c axioms.c -wp -wp-smoke -tests
[wp] [Failed] (Doomed) typed_f_wp_smoke_default_requires (Alt -Ergo 14ms)
[wp] axioms.c:8: Warning: Failed smoke -test
[wp] Proved goals: 3 / 4
[wp] Smoke Tests: 0 / 1

2.2 Post-condition Errors

Post-conditions of a function are veri�ed by WP with respect to the function
body and its pre-conditions. Now consider external functions that only have a
speci�cation but no code. Their post-conditions cannot be veri�ed, hence, they
might silently introduce inconsistencies with respect to their calling context.

Consider for instance the following program (�le ensures.c), where function
main is indeed wrong, since it always returns 1 according to the post-condition
of incr function, and hence cannot return 42 as claimed by its speci�cation:

//@ ensures \result == 42;
int main(void){

int x = 0 ;
incr(&x) ;
return x ;

}

/*@ assigns \nothing ;
ensures *p == \old(*p) + 1 ; */

void incr(int* p);

However, this program is fully proved by WP. Here, the problem comes from
external function incr whose post-condition is doomed by an inconsistency with
its assigns clause: *p and \old(*p) shall be indeed equal since incr is assumed
to have no side-e�ects. Its correct assigns clause would be assigns *p. Such an
inconsistency is trivially detected by WP smoke tests:

> frama -c ensures.c -wp -wp -smoke -tests
[wp] [Failed] (Doomed) typed_incr_wp_smoke_dead_call_s2 (Qed)
[wp] ensures.c:4: Warning: Failed smoke -test
[wp] [Failed] (Doomed) typed_main_wp_smoke_dead_code_s4 (Qed)
[wp] ensures.c:5: Warning: Failed smoke -test
[wp] Proved goals: 3 / 5
[wp] Smoke Tests: 0 / 2

In this case, the doomed post-condition leads to detecting two issues. First,
because the post-condition of function incr is inconsistent with its assigns clause.
Second, because the code in main after calling incr(&x) becomes unreachable
(or dead) code (from the point of view of WP, cf. Sect. 1). Recall that for a
function call, its pre-conditions are veri�ed while its post-conditions are assumed.
Hence, inconsistent post-conditions introduce a false hypothesis into the proof
context for any property after the call.

No Smoke without Fire: Detecting Speci�cation Inconsistencies 5

2.3 Dead Code Errors

Dead code generally stays outside the eyes of deductive veri�cation: any proper-
ties for infeasible execution paths are silently proved valid because their associ-
ated branching conditions are always false. However, as illustrated with doomed
post-conditions in the previous section, some execution paths might be silently
discarded by doomed speci�cations. Consider the following code (�le dead.c):

/*@ requires \valid(x);
ensures \result == *x; */

int read(int *x) {
if (!x) return 42;
return *x;

}

The program is proven valid by WP. The if statement makes the function re-
turn 42 when it receives a NULL pointer in argument. Although it might be the
expected function behavior, this is not re�ected by the speci�cation, which as-
sumes a valid (hence, non-null) pointer, that makes unreachable the statement
return 42. Such an unwanted doomed code is detected by WP smoke tests:

> frama -c dead.c -wp -wp -smoke -tests
[wp] [Failed] (Doomed) typed_read_wp_smoke_dead_code_s2 (Qed)
[wp] dead.c:4: Warning: Failed smoke -test
[wp] Proved goals: 5 / 6
[wp] Smoke Tests: 2 / 3

Dead code is generally unwanted for software quality, so even if the function
above is correct according to ACSL, it is still important to track dead code.

2.4 Non-Terminating Loops and Other Loop Errors

Non-terminating loops can be left undetected by deductive veri�cation, unless
explicit termination proofs are required by the user through loop variant and
terminates clauses. By lack of such speci�cations, which are optional in ACSL

and Frama-C, buggy non-terminating code might be silently veri�ed.7

Consider for instance the following program (�le loop.c):

/*@ requires x >= 0;
ensures \result == 0;

*/
int f(int x) {

/*@
loop invariant x >= 0;
loop assigns x;

*/
while (x > 0) ;
return 42;

}

This program seems to incorrectly return 42, contrary to its speci�cation. How-
ever, the program is fully veri�ed by WP. Actually, there are two bugs in the
code: the loop is non-terminating (making the code after it unreachable), and the

7 Since the Frama-C 29 (Copper) release, terminating annotations are generated
by default. In this example, it has been turned o� by -generated-spec-custom

terminates:skip command line option.

6 Allan Blanchard et al.

return statement is incorrect. Both problems are silently ignored by deductive
veri�cation. Fortunately, WP smoke tests detect them:

> frama -c loop.c -wp -wp -smoke -tests
[wp] [Failed] (Doomed) typed_f_wp_smoke_dead_code_s6 (Qed)
[wp] loop.c:10: Warning: Failed smoke -test
[wp] Proved goals: 7 / 8
[wp] Smoke Tests: 2 / 3

A possible corrected version of the code, where the loop terminates and the
returned value is correct, is the following:

/*@ requires x >= 0;
ensures \result == 0;

*/
int f(int x) {

/*@
loop invariant x >= 0;
loop assigns x;

*/
while (x > 0)

{ x--; }
return x;

}

Another common issue with loops occurs when there is an inconsistency in
loop invariants, or between them and the current proof context: this makes the
entire loop provably dead code. Moreover, it is often the case where a buggy,
non-proved loop speci�cation introduces such an inconsistency. Hence, detecting
inconsistent loop invariants early might help to �x buggy loop speci�cations.WP

smoke tests are also able to detect inconsistencies in loop invariants.

2.5 Exiting Errors

Functions that might exit (by calling exit function) typically have explicit false
post-conditions, that are indeed good candidates for introducing unwanted in-
consistencies in proof contexts.

Consider for instance the following program (�le exit.c):

/*@ ensures \false ;
exits \true ; */

void exit(void);

/*@ ensures \result == 0; */
int main()
{

exit ();
return 42;

}

This program is veri�ed by WP8, although it contains a buggy statement return-
ing 42, which is silently ignored after the exit() call. As expected, WP smoke
tests detect such a dead code:

> frama -c exit.c -wp -wp -smoke -tests
[wp] [Failed] (Doomed) typed_main_wp_smoke_dead_code_s2 (Qed)
[wp] exit.c:8: Warning: Failed smoke -test
[wp] Proved goals: 2 / 3

8 To reproduce this example with Frama-C 29 (Copper), clause generation shall be
customized with -generated-spec-custom terminates:skip,exits:skip.

No Smoke without Fire: Detecting Speci�cation Inconsistencies 7

The main function and its speci�cation are actually completely wrong: it never
returns a value, always exits and its return statement is never executed.

2.6 Avoiding Redundant Alarms

As illustrated above, inconsistencies are closely related to unreachable code.
However, unreachability of a program point extends to a sequence of the following
instructions, provided there is no goto leading into the middle of the sequence.

From a user perspective, we should avoid reporting as unreachable all instruc-
tions along an entire sequence of instructions. Similarly, for performance reasons,
whenWP has put some e�ort in deciding whether a given program point is reach-
able or not, it is not useful to spend the e�ort again on subsequent instructions,
unless they might become reachable through another execution path. Hence, it
is important to focus on necessary program points for generating smoke tests.

2.7 Avoiding Spurious Alarms

In the case of dead code, alarms might be raised by WP smoke tests whereas the
developer knows that the code is dead for good reasons (such as veri�cation scope
or architecture restrictions, countermeasures against fault injection attacks, etc.).
In this case, the developer may provide an assert \false annotation 9 to tell
WP that a given branch is intentionally dead and that it should not warn about
it.

Consider for instance the following program (�le div.c):

/*@ requires b > 0;
ensures \result == a/b;
assigns \nothing; */

int div(int a, int b) {
if (b==0) {

/*@ assert \false; */
return 0;

}
return a/b;

}

The defensive code to avoid the division by zero is actually not needed thanks
to the pre-condition. Normally, WP smoke tests would detect dead code. How-
ever, in this example, the user provides assert \false annotation indicating
that this dead code is expected.10 The program is fully veri�ed by WP, including
the assert annotation indicating the dead code, annotations generated to prove
the absence of runtime errors and remaining smoke tests:

> frama -c div.c -wp -wp -rte -wp -smoke -tests
[wp] Proved goals: 10 / 10
[wp] Smoke Tests: 2 / 2

9 ACSL has two assertion clauses, assert p; and check p;, whose only di�erence is
that with the former, property p is veri�ed and preserved in the proof context, while
with the latter, p is just veri�ed.

10 We do not debate here whether this is a good practice or not.

8 Allan Blanchard et al.

3 Design and Implementation

As illustrated in Sect. 2, misleading or inconsistent speci�cations can be revealed
by the fact that speci�c program points are unreachable. In the context of de-
ductive veri�cation, this can be implemented by checking that false is provable
at the considered program point. Hence, tracking inconsistencies can be imple-
mented by inserting false annotations at the right places. Those annotations
will play the role of Smoke detectors that would reveal misleading speci�cations,
if any. We discuss later the incompleteness of the method, but for now, it su�ces
to state that a smoke test expresses the unreachability of some program point.

Let us also recall that, from the ACSL point of view, any code annotation
attached to unreachable program points is de facto valid because there will be
no execution path to invalidate it. However, it is important for the end users to
have a feedback regarding the source of a program point's unreachability. For
instance, as pointed out in Sect. 2.7, we shall take into account user-de�ned
intended dead code. We shall also take into account that the property of being
dead code may propagate through the program control �ow (cf. Sect. 2.6).

Hence, reachability, explicit dead code, unreachable annotations and smoke
tests are closely related with each other and need speci�c feedback to users.

In this section, we provide a method to determine an optimized collection
of program points that shall be equipped with a smoke test. First, we intro-
duce a reachability analysis dedicated to smoke tests (Sect. 3.1). For an e�cient
generation of smoke tests, we also introduce the concept of nodes protected by
smoke tests and how this concept propagates through the control �ow graph
(Sect. 3.2). Then, we illustrate how we can derive the generation of smoke tests
from standard Weakest-Precondition Calculus of the WP plug-in (Sect. 3.3). We
�nally discuss the completeness of the method (Sect. 3.4) and how to provide
users with accurate feedback (Sect. 3.5) for smoke test results.

3.1 Reachability Analysis

Although reachability is a standard problem in static analysis and compilation
techniques, we need some adaptations to take redundancy and spurious alarms
into account.

We use a Control Flow Graph (CFG) of functions. As illustrated in Fig. 1,
the CFG is made of program points (statements, Stmt) and edges labeled with
instructions (Instr). We assume here that the CFG is normalized, that is, the
large variety of C instructions and statements, such as loops, switches, and con-
ditional operators are decomposed into branching statements and elementary
instructions. Moreover, expressions with side e�ects are assumed to be decom-
posed into assignments l = e of a side-e�ect-free expression e ∈ Expr to an
l-value l ∈ Lval and function calls l = e(e). Expressions and l-values are not
detailed here since this is mostly irrelevant for generating smoke tests. Jumping
C instructions such as goto, break and continue are represented by transitions
labeled with the skip instruction, which has no e�ect at all.

No Smoke without Fire: Detecting Speci�cation Inconsistencies 9

Program points: a, b ∈ Stmt
Instructions: k ∈ Instr ::= l = e | l = e(e) | if(e) | skip | return(e)

Control Flow Graph: {a k−→ b, . . .} ∈ Cfg
Entry point: entry ∈ Stmt

Predecessors: pred(b)
△
= { a | a k−→ b ∈ Cfg }

Fig. 1. Normalized Control Flow Graph (CFG) de�nition

We consider sequential C programs (without threads), hence the CFG is
deterministic, which means that a branching node a has a complete and disjoint

collection of transitions of the form a
if(e)−→ b. A non-branching node a has exactly

one outcoming transition a
k−→ b, where k is an assignment l = e, a function

call l = e(e), a skip or a return(e) instruction. Moreover, since we need to
distinguish the program point right after each call, we further decompose a call
l = e(e) into the sequence {r = e(e); l = r} with an intermediate temporary
variable r to store the result. We can thus de�ne the following classi�cation of
node categories � with the �rst category for a branching node and the others
for non-branching ones � that will be very handy when de�ning smoke tests:

� branch(a) when a has multiple outcoming instructions if(e);
� skip(a) when a has a unique outcoming instruction skip;
� call(a) when a has a unique outcoming instruction r = e(e);
� write(a) when a has a unique outcoming instruction l = e;
� return(a) when a has a unique outcoming instruction return(e).

Nodes after a return(e) transition have no outcoming transition, and for a
given function, there is a unique entry point denoted by entry ∈ Stmt.

Standard reachability analysis can be formally de�ned as the smallest set
R ⊂ Stmt of program points satisfying the following equation:

entry ∈ R ∧ ∀(a k−→ b) ∈ Cfg, a ∈ R =⇒ b ∈ R.

In practice, a well-known e�cient algorithm to compute reachable program
points uses a memoization table and the following lazy de�nition11:

R(n)
△
= n = entry ∨ ∃p ∈ pred(n), R(p),

where pred(n) is the set of predecessors p of n in the CFG de�ned in Fig. 1.
For WP smoke tests, we also need to account for user-de�ned dead code annota-
tions, as stated in Sect. 2.7. To this end, let us introduce predicate dead(a) that

11 The memoization table is initialized to false before recursive calls to cut o� cycles
in the CFG. All recursive de�nitions presented use this technique. This is completely
standard and not represented here for simplicity.

10 Allan Blanchard et al.

checks if a program point a has been annotated with an explicit assert \false

annotation12. Hence, we introduce the following lazy de�nition for reachability:

reachable(n)
△
= ¬ dead(n) ∧ (n = entry ∨ ∃p ∈ pred(n), reachable(p)).

Indeed, dead(a) corresponds to a program point that is explicitly marked
to be unreachable by the user. The associated annotation assert \false is
expected to be eventually proved as part of the user speci�cation. In this case,
such program points will be provably unreachable.

3.2 Protected and Protecting Nodes

In theory, it su�ces to equip all reachable nodes (according to the above def-
inition) with a smoke test to detect any speci�cation inconsistency. However,
doing so will generate far too many smoke tests. As a simple example, consider
a block consisting of a sequence of write instructions, without any call or jump
from/into the block: then all instructions in the block have the same reachability
status, and a smoke test is necessary only for the �rst instruction. All the fol-
lowing instructions of the sequence will be protected : the smoke test for the �rst
instruction will be su�cient to detect a potential unreachability (from the point
of view of WP, cf. Sect. 1) for any of the following instructions of the sequence,
hence they do not need to be equipped with smoke tests. Of course, the situation
becomes more complex in the general case.

We give here an overview of di�erent heuristics that we have implemented
in order to e�ciently remove most redundant smoke tests. This section is rela-
tively technical and might be skipped by readers who are not interested in the
underlying implementation details.

Strictly speaking, computing the optimal set of protected nodes is hard and
would require to compute the dominators of nodes throughout the CFG, which
is complex and costly. Instead, we consider a lightweight heuristic based on local
transitions and a weak de�nition of protecting nodes. Although non-optimal, our
approach appears to be su�cient in practice and avoids most redundancies.

Let us start with the actual implementation, which is based on three mutually
inductive predicates, formally de�ned in Fig. 3.2, that we can brie�y summarize
as follows:

� smoking(a) indicates that program point a shall be �nally equipped with a
smoke test;

� protected(a) indicates that program point a does not require additional pro-
tection (by a smoke test) because its predecessor nodes in the CFG are
already su�ciently (directly or indirectly) protected by smoke tests, or be-
cause a is provably unreachable according to the user-provided speci�cation.

� protecting(a) is the dual notion and indicates that program point a is already
protected by smoke tests so that its immediate successors are also protected
by a.

No Smoke without Fire: Detecting Speci�cation Inconsistencies 11

smoking(a)
△
= entry(a) ∨ (reachable(a) ∧ ¬ protected(a)),

protected(a)
△
= entry(a) ∨ dead(a) ∨ (∀p ∈ pred(a), protecting(p)),

protecting(a)
△
= entry(a) ∨ dead(a) ∨ return(a)

∨ (write(a) ∧ protected(a))
∨ (skip(a) ∧ protected(a))
∨ (branch(a) ∧ ¬ reachable(a)).

Fig. 2. Characterization of smoking nodes

Typically, consider a single write instruction l = e from node a to node b.
Assume that node a is already equipped with a smoke test and that b has no
other predecessor than a. Then a is protecting b and, dually, b is protected by
a. Indeed, they have the same reachability status, hence it is not necessary to
equip b with a smoke test.

Not all nodes are protecting. Typically, consider now that a is a branching
node, already equipped with a smoke test, having two conditional outcomes: if(e)
to node b and if(¬e) to node c. In this case, nodes b and c are not protected by a,
since condition e or condition ¬e might be inconsistent with previous conditions
or user speci�cations from the above context. Node b does not necessarily have
the same reachability status as node a, and neither does node c. Dually, we shall
consider that node a is not protecting its successors. Both nodes b and c will
then need to be equipped with a smoke test, even if a is already protected.

Let us now comment on our de�nitions of predicates smoking, protected and
protecting given in Fig. 3.2.

Smoking Nodes. Predicate smoking(a) characterizes all nodes a that require a
smoke test. The function entry point and loop entry points, characterized by
predicate entry(a), must always be equipped with smoke tests in order to detect
inconsistencies in function pre-conditions and loop contracts. Then, only reach-
able nodes a that are not already protected by other means shall be equipped
with a new smoke test. This explains the de�nition.

Protected Nodes. Predicate protected(a) notably includes nodes that are de facto
equipped by a smoke test or that are provably unreachable by user speci�cations.
Moreover, if all predecessors of node a are protecting nodes, then a will be
su�ciently protected and no additional smoke test will be needed. This explains
the de�nition.

Protecting Nodes. Predicate protecing(a) designates nodes a that propagate their
protection to their successors. All nodes that are de facto equipped by smoke
tests or user-indicated as unreachable will be protecting. Non-branching nodes

12 Actually, any code annotation or loop invariant syntactically equivalent to false is
accepted by WP as well.

12 Allan Blanchard et al.

(write and skip instructions) will be protecting as soon as they are already
protected. Branching nodes are protecting only when they are unreachable.

This heuristic appears to be pretty e�cient in practice: we have observed
quite few redundant smoke tests, and only for very complex control �ow graphs
with weird inter-block gotos.

3.3 Weakest-Precondition Calculus for Smoke Tests

We are now ready to (semi-formally) de�ne the generation of WP smoke tests
to address all potential unwanted situations described in Sect. 2. This section
is more technical: it assumes that the reader is familiar with the weakest pre-
condition calculus and can be skipped by the readers who are not interested in
implementation details.

As introduced above, a smoke test at program point a ∈ Stmt shall detect
an inconsistency in the proof context that makes a to be unreachable through
valid execution paths. Hence, such a smoke test amounts to checking the satis�-
ability or unsatis�ability of the so-called path predicate over a path towards the
corresponding node.

Indeed, the Frama-C/WP deductive veri�cation engine is based on an e�cient
Weakest Precondition Calculus that relies on unsatis�ability of formulas that also
involve path predicates. Hence, we want to adapt our WP calculus in order to
e�ciently generate smoke tests on-the-�y.

First, recall the main objective of WP. Given an ACSL assertion P attached
to program point a ∈ Stmt, we want to prove that predicate P holds for every
memory state m reached by a valid execution path going through node a.

More generally, every ACSL annotation [5] can be decomposed into a collec-
tion of predicates attached to the relevant program points in the CFG. Hence,
we denote by asserts(a) the set of ACSL predicates P to be proved at node a,
and assumes(a) the set of ACSL predicates P assumed at node a.

More formally, let us consider an execution path σ = (ai,mi)i<n where
ai ∈ Stmt are program points and mi ∈ Mem are memory states (0 ≤ i < n).
Execution paths shall be consistent with the semantics of C programs and the
CFG of executed functions, as de�ned in Fig. 3. Moreover, valid execution paths
shall also satisfy ACSL annotations of the program, that is, [[P]](mi) holds for
every P ∈ asserts(ai) at every step i (with 0 ≤ i < n), provided that [[H]](mj)
holds for every H ∈ assumes(aj) at every preceding step j (with 0 ≤ j < i). We
write valid(σ) for an execution path σ that satis�es both the program seman-
tics and ACSL annotations. Notice that we consider below execution paths from
arbitrary nodes, not only those originating from the function entry point.

The Frama-C/WP engine actually computes a collection of proof obligations
for each ACSL annotation. The intuitive meaning is that, provided all the proof
obligations are valid, then all execution paths are valid. We now expose the
classical de�nition of WP and extend it to generating proof obligations.

A proof obligation A : ϕ ∈ Ω is a logical formula ϕ labelled with its origi-
nating ACSL annotation A. For the sake of simplicity, we consider collections of

No Smoke without Fire: Detecting Speci�cation Inconsistencies 13

Memory states: m ∈ Mem
Logical formula: φ, ϕ, (φ ⇒ ϕ), . . . ∈ Prop

C instruction semantics: [[k]](m,m′) ∈ Prop
ACSL predicate semantics: [[P]](m) ∈ Prop
ACSL predicate collection: [[P1, . . . , Pn]](m) ≡ ∀i, [[Pi]](m)

Execution paths σ = (ai,mi)i<n

Program semantics: ∀i, ∃k, ai
k−→ ai+1 ∈ Cfg ∧ [[k]](mi,mi+1)

Valid execution paths : ∀i, (∀j < i, [[assumes(aj)]](mj)) =⇒ [[asserts(ai)]](mi)

Fig. 3. Semantics of C programs annotated in ACSL

wp(a)
△
= wpGoals(a) ∪ wpCfg(a)

wpGoals(a)
△
=

⋃
{ A : [[P]](ma) | A : P ∈ asserts(a) }

wpCfg(a)
△
=

⋃
{A : wpPath(a, k, b, φ) | a k−→ b ∈ Cfg, A : φ ∈ wp(b) }

wpPath(a, k, b, φ)
△
= [[assumes(a)]](ma) ⇒ [[k]](ma,mb) ⇒ φ

Fig. 4. Weakest pre-condition calculus

proof obligations represented by sets, although their e�cient implementation in
WP is completely di�erent.

We introduce a collection of free memory state variables (ma)a∈Stmt indexed
by program points. WP generates for each node a a collection of partial proof
obligations formally de�ned in Fig. 4. Informally, from the bottom-up:

� wpGoals(a) ensures that all asserted ACSL predicates at node a are valid in
memory state ma;

� wpPath(a, k, b, φ) ensures that, if property φ holds for execution paths origi-
nating from b, then wpPath(a, k, b, φ) holds for execution paths going through

transition a
k−→ b. To achieve that, the assumed assertions at point a on

memory state ma are added to the proof context, together with the instruc-
tion semantics [[k]](ma,mb). Then, wpCfg(a) aggregates wpPath(a, k, b, φ) for

every transition a
k−→ b of the CFG and partial proof obligations φ ∈ wp(b)

computed for node b;
� Finally, wp(a) collects both wpGoals(a) and wpCfg(a).

Inductively, one can then easily prove that, provided all proof obligations
computed by wp(entry) are valid formulas, all execution paths in the CFG are
actually valid.

Now to generate a WP smoke test for node a, it su�ces to augment the def-
inition of wp(a) with a new proof obligation for detecting that valid execution
paths cannot reach node a. For this purpose, we simply generate a proof obli-
gation φ = false for smoking nodes. A smoke test proof obligation at node a

14 Allan Blanchard et al.

is labelled with a special ACSL annotations denoted by Smoke a, and we �nally
update the de�nition of proof obligations at node a as follows:

wp(a)
△
= . . . ∪ { Smoke a : false | smoking(a) }

Moreover, since we now have the unreachable(a) analysis at hand, we can
further optimize the generation of proof obligations for explicit dead code. We
omit here those details for lack of place, but this is actually implemented in WP.

The interpretation of wp(a) shall now be interpreted in a slightly di�erent
way: actually, each proof obligation A : φ labelled with non-smoking ACSL an-
notation A still means that the annotation is valid on all execution paths. But
proof obligation Smoke a : φ labelled with a smoke test annotation at node a
actually entails that node a is provably unreachable for valid execution paths.
This is indeed equivalent to verifying the ACSL annotation check \false at
node a. Notice that this would not be same to verify the ACSL annotation
assert \false, since such an annotation would be also inserted as an assump-
tion into the proof context of other proof obligations, which would be completely
incorrect.

Hence, the global objective of WP for smoke tests has now changed: we still
want to succeed in proving all proof obligations A : φ labeled by non-smoking
ACSL annotations A, but we want to invalidate the proof obligations Smoke a : φ
labeled by smoke tests. We debate further on how to ful�ll those proof objectives
when using SMT solvers in Sect. 3.4. We will then discuss how to provide users
with informative feedback on smoke test results in Sect. 3.5.

3.4 Proof Method

In this section, we discuss the smoke test veri�cation method itself. As ex-
plained previously, smoke tests are similar to standard proof obligations for a
check \false annotation, although we expect this annotation to be unprovable.

Since we use SMT solvers to discharge proof obligations, let us reformulate
smoke test veri�cation in terms of satis�ability. A logical formula is submitted
to an SMT solver, and it outputs one of the following possible answers:

� UNSAT: the formula is not satis�able.
� SAT: the formula is satis�able, and sometimes, the SMT solver can output
a model validating the formula.

� UNKNOWN: the solver has failed to decide the satis�ability of the formula,
or it has exhausted the allocated resources (time or memory).

The proof obligation A : ϕ shall be understood as universally quanti�ed over
its free variables. WP submits its negation, ∃¬ϕ, to SMT solvers. Hence, an
UNSAT result means that ∀ϕ is true, which is actually the expected result. SAT
results are currently not exploited by WP, although they can be used to generate
counter-examples for debugging13.

13 Counter-examples have been integrated into WP in the latest release Frama-C 29
(Copper).

No Smoke without Fire: Detecting Speci�cation Inconsistencies 15

For a smoke test,WP submits the negated formula as usual, but the expected
result is now SAT, in order to prove that the associated program point is actually
reachable. If the SMT solver replies with UNSAT � which is not the expected
result � we actually have detected some dead code or a proven inconsistency in
the program speci�cations, and we can report the doomed program point to the
user. However, when the SMT solver replies UNKNOWN, we have no guarantee
that the formula is satis�able or not.

Hence, smoke test veri�cation is an incomplete process. This is the funda-
mental reason to refer to such a veri�cation artifact as a test rather than a
proof.

3.5 Providing Feedback to Users

The various results obtained from the generated proof obligations, especially
smoke tests, deserve various kinds of feedback to users. Let us �rst consider
the (set of possibly several, e.g. for loop invariants) proof obligations A : ϕ
associated to some non-smoking ACSL annotation A. When all proof obligations
labelled with A are discharged, we obviously report that the ACSL annotation
A is valid14.

For smoke test results, there are several situations to consider. Consider �rst
a successful smoke test, that is, proof obligation Smoke a : ϕ is unproven. Indeed,
no inconsistency at node a has been detected, and no further feedback is provided
to the user: sanity checks are all right in this situation.

Consider now a failed smoke test, that is, proof obligation Smoke a : ϕ is
proved. Here, the program point a is proved to be unreachable although not
explicitly speci�ed by the user to be intentional dead code. As illustrated by
examples of Sect. 2, we report a failed smoke test. Further, in order to commu-
nicate this result to other plug-ins, WP also generates a new ACSL annotation
assert \false at program point a, with a valid status, hence promoting the
implicit check \false� actually proved by the smoke test � to a newly proven
dead-code program point.

Moreover, all other ACSL annotations attached to the same program point
become also de facto valid because of unreachability. More generally, all annota-
tions that are associated to node a such that ¬reachable(a) are also valid because
of unreachability. To inform the user, WP assigns a special validity status �Valid
but Unreachable� to all those properties.

4 Industrial Experiments

The smoke test generation has been experimented on large industrial case stud-
ies, in particular, on real code bases under certi�cation processes. Generating
smoke tests during normal WP processing does not produce any visible over-
head. However, as mentioned earlier, verifying smoke tests implies an additional

14 More precisely, other proof obligations used as hypotheses for A are also taken into
account by WP. We omit those details here for simplicity.

16 Allan Blanchard et al.

dead-requires dead-assumes dead-call dead-code dead-loop total

Total generated 363 150 732 1089 16 2350

Proved by CFG 0 0 0 7 0 7
Proved by Qed 0 0 0 24 0 24
Proved by SMT 0 0 0 6 0 6

Fig. 5. Generated and failing smoke tests per category and proving analyzer (with a
default timeout of 2s per smoke test) for the JCVM project

cost, which can become signi�cant for large projects, since we need to wait for
SMT solvers to fail at proving satis�ability. Most of the time, on complex in-
dustrial studies, we must wait for external provers to timeout for each generated
smoke test. This delay is alleviated by using prover caches, however, users gen-
erally turn smoke test veri�cation o� during speci�cation and proof debugging,
and only turn smoke tests on for nightly builds and �nal proof replay.

Despite its operational cost, smoke tests generation proves to be very useful
for early detection of speci�cation bugs, that can sometimes be di�cult and time-
prone to �nd. We also found internal soundness bugs of WP thanks to smoke
tests, especially inside its standard logic library which contains many axioms. To
avoid those kinds of inconsistencies, we have decided to turn most of our axioms
into proper lemmas or Coq realizations.

Industrial Application on the JavaCard Virtual Machine (JCVM). WP has been
applied on a large industrial code (a JavaCard Virtual Machine with over 7,000
lines of C code) to prove functional and global security properties [12] at Thales.
This project was conducted according to a stringent common criteria certi�-
cation process [19] and succeeded to reach the highest assurance level (EAL7,
certi�cate available at [1]). Besides the e�ort to specify target properties with
more than 30,000 lines of ACSL, the most important challenge was to ensure the
full consistency of the formal speci�cation.

Smoke tests have been systematically applied throughout the project to mon-
itor the consistency of formal speci�cation. They e�ectively guided the initial
steps of veri�cation especially when introducing hypotheses to de�ne the perime-
ter of analyzed code. Given the already high cost of proof computation (over 4
hours on a PC with 3.10GHz 12-core CPU and 64 GB RAM for more than
80,000 veri�cation conditions generated by WP), smoke tests provided a conve-
nient way for sanity checks with a reasonable overhead. The generation of smoke
tests is very e�cient and fully automatic. The veri�cation of smoke tests has a
reasonable cost thanks to proof parallelization and prover cache. Overall, only a
20min (i.e., ≈8%) overhead is observed for the full proof time of the JCVM due
to smoke tests.

Figure 5 shows the number of various kinds of generated smoke tests: pre-
condition errors (dead-requires, dead-assumes), non-terminating calls (dead-call),
dead-code and post-condition errors (dead-code), and inconsistent loop invariants
(dead-loop). In total, 2,350 smoke tests were generated and 37 of them were
proved to be failing. The last three lines of the table show the number of smoke

No Smoke without Fire: Detecting Speci�cation Inconsistencies 17

tests proved as failing by di�erent analyzers with the default timeout of 2s per
smoke test. The lines for the three analyzers are shown in the order in which they
are applied, so that an SMT solver is used only for goals not proved with CFG and
Qed. In this project, we used only one SMT solver, Alt-Ergo [18]. All failing smoke
tests belong to the dead-code category and are justi�ed by the assumptions
for the considered version. They are spurious alarms and may be avoided with
explicit assert \false annotations at the corresponding code locations. Most
smoke tests were simple enough to be either detected as unreachable by the
CFG (control �ow graph) analysis of Frama-C (7), or discharged by Qed (24).
The default timeout of 2s per smoke test seems to be su�cient in practice to
detect failing smoke tests for the JCVM. Proof sessions with a bigger timeout
(3s, 5s and even 10s) did not detect more failing smoke tests. However, with a
smaller timeout of 1s, 5 of them were not detected: the SMT solver identi�ed
only one failing smoke test instead of 6 (so for this timeout, in the last line
of Fig. 5, 6 should be replaced by 1). As expected (for theoretical reasons of
proof incompleteness), this illustrates that the absence of proof of the proof
obligation for a smoke test increases con�dence but cannot guarantee that the
smoke test does not fail. Thus, a suitable timeout duration should be chosen.
Our experiments and observations give con�dence that the default timeout of 2s
is suitable for the JCVM project. Indeed, rigorous code and speci�cation review
did not allow us to suspect other failing smoke tests in the project.

5 Related Work

Hoenicke et al. [15] de�ne the notion of doomed statement we use in this work
and relies on weakest pre-condition calculus with Boogie [4]. Bertoloni et al. [8]
follow the same path. The main di�erence is that our work was originally meant
to �nd inconsistencies in speci�cations, yet we have extended the analysis to error
detection, in particular, the presence of dead code and, in a limited way, memory
access errors. Other e�orts, instead of deductive veri�cation, use pattern-based
and data�ow-based approaches [2] or constrain solving through Horn clauses [16].

The authors of [15,8,22,11] focus mainly on unde�ned behavior detection. For
this, they make some assumptions about pointers that we do not currently make
withWP. While useful to detect true errors, these assumptions might create false
alarms (for example when a pointer is supposed not to be in the beginning of a
memory block in the input of a function). We plan to extendWP with such kinds
of assumptions but in a more controlled way, in order to optimize detection of
runtime errors.

Most of these e�orts were meant to tackle the problem of having too many
false alarms, like [13], or for example WP without smoke tests, where we have
proof failures on veri�cation of absence of runtime errors but no way to know
whether the alarm is a false alarm. Another approach for this is using model
checking to �nd traces that bring to problems like in [10], or at least to �nd
an explanation about the failure [21], or to produce a counter-example to the
correct behavior through a specialized mechanism [20]. While we plan to add

18 Allan Blanchard et al.

this last capability to WP, we prefer to rely on the ability of SMT solvers like
CVC5 [3] or Z3 [9] to produce counter-examples.

6 Conclusion

This tool paper presented the design and implementation of smoke tests in
Frama-C/WP. Introduced to address potential inconsistencies in speci�cations,
they provide to veri�cation engineers a practical and pragmatic solution for de-
tecting inconsistencies and dead code, even if it is incomplete and cannot guar-
antee their absence. Along with the extensions we mentioned in Sect. 5, future
work directions include a larger evaluation, as well as proof of correct generation
of smoke tests, as part of a long-term e�ort on formalization of WP. Suggesting
a suitable timeout for a smoke test in a given project (e.g. based on statistics or
machine-learning) is another work perspective.

Acknowledgment. Part of this work was supported by ANR grants ANR-22-CE39-

0014 and ANR-22-CE25-0018.

References

1. ANSSI: The EAL7 certi�cate ANSSI-CC-2023/45, https://cyber.gouv.fr/

sites/default/files/document_type/Certificat-CC-2023_45fr_0.pdf

2. Ayewah, N., Pugh, W.W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating
static analysis defect warnings on production software. In: Das, M., Grossman,
D. (eds.) Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, PASTE'07, San Diego, Cali-
fornia, USA, June 13-14, 2007. pp. 1�8. ACM (2007). https://doi.org/10.1145/
1251535.1251536

3. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 13243, pp. 415�442. Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_24

4. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable veri�er for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Nether-
lands, November 1-4, 2005, Revised Lectures. Lecture Notes in Computer Science,
vol. 4111, pp. 364�387. Springer (2005). https://doi.org/10.1007/11804192_17

5. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. SIG-
SOFT Softw. Eng. Notes 31(1), 82�87 (Sep 2005)

https://cyber.gouv.fr/sites/default/files/document_type/Certificat-CC-2023_45fr_0.pdf
https://cyber.gouv.fr/sites/default/files/document_type/Certificat-CC-2023_45fr_0.pdf
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1145/1251535.1251536
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_17

No Smoke without Fire: Detecting Speci�cation Inconsistencies 19

6. Baudin, P., Bobot, F., Bühler, D., Correnson, L., Kirchner, F., Kosmatov, N.,
Maroneze, A., Perrelle, V., Prevosto, V., Signoles, J., Williams, N.: The dogged
pursuit of bug-free C programs: the Frama-C software analysis platform. Commun.
ACM 64(8), 56�68 (2021). https://doi.org/10.1145/3470569

7. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Speci�cation Language, http://frama-c.com/acsl.html

8. Bertolini, C., Schäf, M., Schweitzer, P.: Infeasible code detection. In: Joshi, R.,
Müller, P., Podelski, A. (eds.) Veri�ed Software: Theories, Tools, Experiments -
4th International Conference, VSTTE 2012, Philadelphia, PA, USA, January 28-
29, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7152, pp. 310�325.
Springer (2012). https://doi.org/10.1007/978-3-642-27705-4_24

9. Bjørner, N.S., Eisenhofer, C., Kovács, L.: Satis�ability modulo custom theories
in Z3. In: Dragoi, C., Emmi, M., Wang, J. (eds.) Veri�cation, Model Check-
ing, and Abstract Interpretation - 24th International Conference, VMCAI 2023,
Boston, MA, USA, January 16-17, 2023, Proceedings. Lecture Notes in Com-
puter Science, vol. 13881, pp. 91�105. Springer (2023). https://doi.org/10.1007/
978-3-031-24950-1_5

10. David, C., Kesseli, P., Kroening, D., Lewis, M.: Danger invariants. In: Fitzgerald,
J.S., Heitmeyer, C.L., Gnesi, S., Philippou, A. (eds.) FM 2016: Formal Meth-
ods - 21st International Symposium, Limassol, Cyprus, November 9-11, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9995, pp. 182�198 (2016).
https://doi.org/10.1007/978-3-319-48989-6_12

11. Dillig, I., Dillig, T., Aiken, A.: Static error detection using semantic inconsis-
tency inference. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementa-
tion, San Diego, California, USA, June 10-13, 2007. pp. 435�445. ACM (2007).
https://doi.org/10.1145/1250734.1250784

12. Djoudi, A., Hána, M., Kosmatov, N.: Formal veri�cation of a JavaCard vir-
tual machine with Frama-C. In: the 24th Int. Symp. on Formal Methods (FM
2021). vol. 13047, pp. 427�444. Springer (2021). https://doi.org/10.1007/

978-3-030-90870-6_23

13. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
PLDI 2002: Extended static checking for java. ACM SIGPLAN Notices 48(4S),
22�33 (2013). https://doi.org/10.1145/2502508.2502520

14. Hähnle, R., Huisman, M.: Deductive software veri�cation: From pen-and-paper
proofs to industrial tools. In: Computing and Software Science � State of the Art
and Perspectives, LNCS, vol. 10000, pp. 345�373. Springer (2019). https://doi.
org/10.1007/978-3-319-91908-9_18

15. Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: It's doomed; we can
prove it. In: Cavalcanti, A., Dams, D. (eds.) FM 2009: Formal Methods, Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings.
Lecture Notes in Computer Science, vol. 5850, pp. 338�353. Springer (2009). https:
//doi.org/10.1007/978-3-642-05089-3_22

16. Kahsai, T., Navas, J.A., Jovanovic, D., Schäf, M.: Finding inconsistencies in pro-
grams with loops. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
Logic for Programming, Arti�cial Intelligence, and Reasoning - 20th Interna-
tional Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceed-
ings. Lecture Notes in Computer Science, vol. 9450, pp. 499�514. Springer (2015).
https://doi.org/10.1007/978-3-662-48899-7_35

https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
http://frama-c.com/acsl.html
https://doi.org/10.1007/978-3-642-27705-4_24
https://doi.org/10.1007/978-3-642-27705-4_24
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-319-48989-6_12
https://doi.org/10.1007/978-3-319-48989-6_12
https://doi.org/10.1145/1250734.1250784
https://doi.org/10.1145/1250734.1250784
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.1145/2502508.2502520
https://doi.org/10.1145/2502508.2502520
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-642-05089-3_22
https://doi.org/10.1007/978-3-642-05089-3_22
https://doi.org/10.1007/978-3-642-05089-3_22
https://doi.org/10.1007/978-3-642-05089-3_22
https://doi.org/10.1007/978-3-662-48899-7_35
https://doi.org/10.1007/978-3-662-48899-7_35

20 Allan Blanchard et al.

17. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: A software analysis perspective. Formal Asp. Comput. 27(3), 573�609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

18. OCamlPro: The Alt-Ergo solver, https://alt-ergo.ocamlpro.com/
19. Portal, T.C.C.: Common criteria for information technology security evaluation,

https://www.commoncriteriaportal.org/

20. Rümmer, P., Shah, M.A.: Proving programs incorrect using a sequent calculus
for java dynamic logic. In: Gurevich, Y., Meyer, B. (eds.) Tests and Proofs - 1st
International Conference, TAP 2007, Zurich, Switzerland, February 12-13, 2007.
Revised Papers. Lecture Notes in Computer Science, vol. 4454, pp. 41�60. Springer
(2007). https://doi.org/10.1007/978-3-540-73770-4_3

21. Schäf, M., Schwartz-Narbonne, D., Wies, T.: Explaining inconsistent code. In:
Meyer, B., Baresi, L., Mezini, M. (eds.) Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC/FSE'13, Saint Petersburg, Russian Federation, Au-
gust 18-26, 2013. pp. 521�531. ACM (2013). https://doi.org/10.1145/2491411.
2491448

22. Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: A di�erential ap-
proach to unde�ned behavior detection. Commun. ACM 59(3), 99�106 (2016).
https://doi.org/10.1145/2885256

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://alt-ergo.ocamlpro.com/
https://www.commoncriteriaportal.org/
https://doi.org/10.1007/978-3-540-73770-4_3
https://doi.org/10.1007/978-3-540-73770-4_3
https://doi.org/10.1145/2491411.2491448
https://doi.org/10.1145/2491411.2491448
https://doi.org/10.1145/2491411.2491448
https://doi.org/10.1145/2491411.2491448
https://doi.org/10.1145/2885256
https://doi.org/10.1145/2885256

	No Smoke without Fire: Detecting Specification Inconsistencies with Frama-C/WP

