
A Lesson on Verification of IoT Software with
Frama-C

Allan Blanchard
Inria Lille – Nord Europe

Villeneuve d’Ascq, France
Allan.Blanchard@inria.fr

Nikolai Kosmatov
CEA, List

Software Reliability and Security Lab
Gif-sur-Yvette, France

Nikolai.Kosmatov@cea.fr

Frédéric Loulergue
SICCS

Northern Arizona University
Flasgstaff, USA

Frederic.Loulergue@nau.edu

Abstract—This paper is a tutorial introduction to FRAMA-
C, a framework for analysis and verification of C programs.
We present value analysis, deductive verification and runtime
verification of software using FRAMA-C and in particular its
EVA, WP, and E-ACSL plugins. These techniques are illustrated
on examples coming from real-life verification case studies for
different modules of Contiki, a lightweight operating system for
the Internet of Things.

Keywords—software verification; C programs; value analysis;
deductive verification; runtime verification; Contiki.

I. INTRODUCTION

Among distributed systems, connected devices and services,
also referred to as the Internet of Things (IoT), have prolifer-
ated very quickly in the past years. There are now billions of
interconnected devices, and this number is rapidly growing. It
is anticipated that by 2021, about 46 billions of devices will
be in use.

Some of these devices are in service in security critical
domains, and even in domains that are not necessarily critical,
for example privacy issues may arise with devices collecting
and transmitting a lot of personal information. Moreover,
insufficiently secured devices may become a target for massive
distributed denial of service attacks. This raises important
security challenges. It is natural to expect that formal methods
— that have been successfully used for years in highly critical
domains — can now help to bring security into the IoT field.

While the correctness of an implementation with respect to
a formal functional specification provides the strongest form
of guarantee, it can be very costly to achieve. In practice it is
therefore more common to rely on a combination of different
verification techniques to achieve an appropriate degree of
guarantee:

• static analysis to guarantee the absence of runtime errors,
• deductive verification for functional correctness,
• dynamic (runtime) verification for parts of code that

cannot be proved using deductive verification.
This tutorial paper illustrates these three approaches using
FRAMA-C.

FRAMA-C1 [1] is a source code analysis platform that
aims at conducting verification of industrial-size programs

1See https://frama-c.com

written in ISO C99 source code. FRAMA-C fully supports
combinations of different approaches, by providing its users
with a collection of plugins for static and dynamic analyses of
safety- and security-critical software. Moreover, collaborative
verification across cooperating plugins is enabled by their
integration on top of a shared kernel, and their compliance
to a common specification language: ACSL [2].

Recently, FRAMA-C has been successfully applied to the
verification of software [3]–[5] in the context of the Internet of
Things, more specifically, the verification of several modules
of Contiki [6], an open-source operating system for the IoT.
The purpose of this tutorial is to present several verification
techniques using FRAMA-C and illustrate them on C code
examples extracted from real-life case studies on verification
of Contiki.

This tutorial paper is organized as follows. In Section II, we
present how to check the absence of runtime errors using EVA,
an automatic value analysis plugin of FRAMA-C. Verifying
a library rather than a whole program, or verifying more
complex (functional) properties, can require deductive verifi-
cation with WP, a deductive verification plugin of FRAMA-
C, that is presented in Section III. WP requires a formal
specification in ACSL, so Section III also introduces the ACSL
specification language. However, it is not always possible to
formally specify and prove a whole software project with WP.
Sometimes only some (most critical) parts are formally proved.
Runtime verification with the E-ACSL2C plugin of FRAMA-
C is possible even for selected modules and functions, and
even for a partial specification. It can also help to check the
specification on a few tests before trying to prove it. The
E-ACSL2C plugin is presented in Section IV. Finally, we
conclude and recommend further reading in Section V.

II. ABSENCE OF RUNTIME ERRORS USING EVA

A. EVA on Simple Examples

Value analysis is a program analysis technique that com-
putes a set of possible values for every program variable at
each program point. It is based on the abstract interpretation
technique proposed by Cousot and Cousot in the 1970’s [7]. Its
main idea is to compute an abstract view of values of variables
in the form of abstract domains. For example, a usual abstract
view for a number value is an interval.



1 int f ( int a ) {
2 int x, y;
3 int sum, result;
4 if(a == 0){
5 x = 0; y = 0;
6 }else{
7 x = 5; y = 5;
8 }
9 sum = x + y; // sum can be 0

10 result = 10/sum; // risk of division by 0
11 return result;
12 }

1 int f ( int a ) {
2 int x, y;
3 int sum, result;
4 if(a == 0){
5 x = 0; y = 5;
6 }else{
7 x = 5; y = 0;
8 }
9 sum = x + y; // sum cannot be 0

10 result = 10/sum; // no div. by 0
11 return result;
12 }

(a) Program with a real error (b) Program with a false alarm

Fig. 1. Two toy examples where EVA reports an alarm of division by 0 at line 10.

Value analysis can be very useful to detect potential runtime
errors or prove their absence. Typical examples include invalid
pointers, invalid array indices, arithmetic overflows or division
by zero. It can also help to prove other properties for which
domain-based reasoning can be efficient.

Since the FRAMA-C Aluminium release, FRAMA-C offers a
new value analysis plugin EVA (Evolved Value Analysis) [8].
It implements value analysis as a generic extendable analysis
parameterized by cooperating abstract domains. Different,
highly optimized domains are used to represent integers,
floating-point numbers and pointers. EVA is strongly integrated
into the FRAMA-C ecosystem and offers a basis for many other
derived plugins that reuse the results of EVA (see [1]).

Figure 1a shows an example of a program where EVA
detects an alarm of division by zero. Indeed, after the then
branch, both x and y are zero, so their sum is zero as well.
To run FRAMA-C/EVA on this program (in file div1.c), the
user can type the following command

frama-c -val div1.c -main f

in order to see the results in the terminal, or

frama-c-gui -val div1.c -main f

in order to explore the results in the Graphic User Interface
of FRAMA-C. The option -main f indicates that the entry
point is function f (rather than the usual function main, not
given in this toy example). EVA computes the sets of possible
values of variables at each program point. After the conditional
statement, the domains of x (and similarly for that of y)
computed inside the then and else branches are joined into
a more general domain containing both cases. That is why the
domain of x and that of y at line 9 are {0, 5}. Thus, after
the conditional statement, the domain of sum is computed as
{0, 5, 10} after the statement on line 9. Since 0 is identified as
a possible value of sum before the division on line 10, EVA
detects a potential risk of division by 0 and reports an alarm.
It is reported by adding an ACSL assertion

assert sum 6= 0;

before line 10 in the GUI. (For convenience of the reader,
in the examples in this paper, some ACSL symbols (like

\forall, \exists, integer, <=, !=, &&, etc.) are pretty-
printed in the corresponding mathematical notation (resp., as
∀, ∃, Z, ≤, 6=, ∧, etc.).)

This assertion indicates that the risk of division by zero at
line 10 cannot be excluded, and the given property should be
verified (manually or by other means) to exclude this risk.
In this case, this property cannot be proved, and the risk is
actually real since we have a division by zero if the input
value a is zero and the then branch is taken. Notice that the
computed domains are over-approximated: in fact, the exact
domain of sum after line 9 is {0, 10}, but it is computed as
{0, 5, 10} even if value 5 cannot be taken.

B. False Alarms and Parameterization

Over-approximation can lead to detecting false alarms, that
is, situations where a potential error is reported while the
error can never occur in practice. Consider the program in
Figure 1b. On this program, the analysis by EVA will report a
risk of division by zero on line 10 as well. Here again, after the
conditional statement, the domains of x (and similarly for that
of y) computed inside the then and else branches are joined
into a more general domain containing both cases. Thus, the
domain of x and that of y at line 9 are {0, 5}, and the domain
of sum after line 9 is computed as {0, 5, 10}. Since it contains
0, EVA reports a risk of division by zero. Here, the exact
domain of sum after line 9 is {5}, the other values (0 and 10)
being due to over-approximation.

Several options are available to control the precision of
the analysis. Let us illustrate one very useful option, called
-slevel. It allows to maintain several abstract states in
parallel along several execution traces without joining them
immediately into a unique (but over-approximated) state. In
other words, this option is an instance of trace partitioning [9].
The precision of the analysis can be improved by giving an
additional option -slevel n that makes the analysis keep
up to n states in parallel before joining them. This increase in
precision comes at the cost of making the analysis potentially
slower. It is possible to set this option for a specific loop,
specific function or for the whole program.

Suppose EVA is run on the program of Figure 1b (in file
div2.c) with an additional option -slevel 2:



1 #include "__fc_builtin.h"
2 int A, B;
3 int root(int N){
4 int R = 0;
5 while(((R+1)*(R+1)) ≤ N) {
6 R = R + 1;
7 }
8 return R;
9 }

10

11 void main(void)
12 {
13 A = Frama_C_interval(0,64);
14 B = root(A);
15 }

Fig. 2. A program computing an integer square root.

frama-c-gui -val div2.c -main f -slevel 2

In this case, EVA keeps precise domains for x and y after the
conditional statement, and the domain of sum after line 9 in
both cases is computed as {5}. Now, EVA proves that the risk
of error is excluded, and does not report a false alarm.

Suppose now that some of the variables are not initialized
in one of the branches, say, the assignment of y in line 5 in
Figure 1b is deleted. In this case, EVA detects that variable y
(that is, the value at address &y) can be read on line 9 without
being necessarily initialized. This alarm is reported by adding
an assertion before line 9

assert \initialized(&y);

In this case, this is a real error: providing the -slevel option
will not remove this alarm.

Consider now the example of Figure 2. The function root
computes the integer square root of a given integer N ≥ 0,
that is, an integer r ≥ 0 such that r2 ≤ N < (r + 1)2.
This function is called for the integer value A supposed to
be between 0 and 64 (this assumption is made by the built-in
function call Frama_C_interval(0,64) available thanks
to the included header file on line 1). Application of EVA with
default options by the command

frama-c-gui -val sqrt.c

on a 32-bit architecture produces two alarms before line 5:

assert R + 1 ≤ 2147483647;
assert (R + 1)*(R + 1) ≤ 2147483647;

These alarms report a potential risk of arithmetic overflows
in expressions R + 1 and (R + 1)*(R + 1). Indeed,
because of the loop and over-approximation, the computed
domain for R on line 5 is the interval 0, ..., 2147483647,
that is, all positive integers up to the maximal integer value
(2147483647 on a 32-bit architecture). Hence, EVA cannot
exclude the risk of overflows. Using EVA with an additional
option -slevel 8, that makes the analysis keep up to 8

states2 in parallel, improves the precision and computes the
precise values of R after each iteration separately. It allows
EVA to exclude the risk of overflows.

EVA can also detect potentially invalid pointers. For exam-
ple, if p is a pointer and the pointer access in a statement
*p=10; is not proved valid, it will report an alarm

assert \valid(p);

C. A Real-Life Example

Let us now illustrate the proof of absence of runtime errors
on a real-life example of IoT software. Figure 3 shows a
(partially simplified) code of the AES (Advanced Encryption
Standard) module of Contiki and tests the encryption for
concrete key and message. It installs an AES key and runs the
encryption function to encrypt a given message data (cf. lines
44–51). Running EVA on this program allows to prove that all
variables are initialized before being read, all memory accesses
are valid and there are no arithmetic overflows. During the
tutorial, we consider other examples with slight erroneous
modifications of this program to illustrate how runtime errors
can be detected by EVA. Let us briefly mention some of them.
If the initialization of the arrays on lines 46 or 47 is omitted (or
is not complete), EVA will report an alarm for non-initialized
variables. If the size of the arrays on lines 46 or 47 is less than
required (i.e. less than 16 in this example) EVA will report
an alarm for incorrect indices. Finally, if the loop condition is
wrong (say, i≤11 on line 22) EVA will also detect a potential
out-of-bounds array access.

III. DEDUCTIVE VERIFICATION USING WP

As previously pointed out, the EVA plugin can formally
verify the absence of runtime errors during a whole program
analysis, or detect potential errors. However, in order to
formally verify a library for any call context (respecting the
library requirements) or to verify more complex properties
(such as functional properties), we generally need a more
precise way to specify the requirements and the behavior
of each function. EVA can be unable to handle complex
specifications and to prove functional properties. In FRAMA-
C, such properties can be specified in the ACSL language and
proved using the deductive verification plugin WP.

A. ACSL Specification Language

ACSL is the specification language of the FRAMA-C plat-
form. It is based on the notion of contract, like in JML or
Eiffel for example, and allows users to specify functional prop-
erties of their programs. The properties that can be expressed
in ACSL are roughly first order logic formulae composed
of pure C expressions. ACSL also brings pure logic types
(mathematical integers, reals, sets, lists, ...) and some built-
in predicates, which can be useful for the specification of C-
specific properties, typically, related to pointers such as pointer
validity, memory separation, etc. Of course, it is also possible
for users to write their own predicates and logic functions.

2a smaller value can be sufficient on some versions of FRAMA-C.



1 #define AES_128_BLOCK_SIZE 16
2 #define AES_128_KEY_LENGTH 16
3 typedef unsigned char uint8_t;
4

5 static const uint8_t sbox[256] =
6 { /* initialization for 256 elements */ };
7

8 static uint8_t round_keys[11][AES_128_KEY_LENGTH];
9

10 static uint8_t galois_mul2(uint8_t value) {
11 uint8_t xor_val = (value >> 7) * 0x1b;
12 return ((value << 1) ˆ xor_val);
13 }
14

15 static void aes_128_set_key(const uint8_t *key) {
16 uint8_t i, j, rcon;
17 rcon = 0x01;
18

19 for(i = 0; i < AES_128_KEY_LENGTH; i++) {
20 round_keys[0][i] = key[i];
21 }
22 for(i = 1; i ≤ 10; i++) {
23 round_keys[i][0] = sbox[round_keys[i - 1][13]]
24 ˆ round_keys[i - 1][0] ˆ rcon;
25 round_keys[i][1] = sbox[round_keys[i - 1][14]]
26 ˆ round_keys[i - 1][1];
27 round_keys[i][2] = sbox[round_keys[i - 1][15]]
28 ˆ round_keys[i - 1][2];
29 round_keys[i][3] = sbox[round_keys[i - 1][12]]
30 ˆ round_keys[i - 1][3];
31

32 for(j = 4; j < AES_128_BLOCK_SIZE; j++) {
33 round_keys[i][j] = round_keys[i - 1][j]
34 ˆ round_keys[i][j - 4];
35 }
36 rcon = galois_mul2(rcon);
37 }
38 }
39

40 static void aes_128_encrypt(uint8_t *state) {
41 /* encryption code */
42 }
43

44 static void test_aes_128()
45 {
46 uint8_t key[16] = { /* initialization */ };
47 uint8_t data[16] = { /* initialization */ };
48

49 aes_128_set_key(key);
50 aes_128_encrypt(data);
51 }

Fig. 3. A test of the AES encryption module of Contiki (simplified).

The contract of a function is composed of two main
parts: precondition and postcondition. A precondition clause
is introduced by the requires keyword and describes the
expected state of the system before calling the function. A
postcondition clause is introduced by the ensures keyword
and expresses how the state of the program is modified (or
not) by the function, and the properties of the result. Several
clauses on the same type can be written one after another, in
that case they are equivalent to a single clause expressing the
conjunction of the corresponding properties. A particular class
of postconditions is introduced using the assigns keyword.
It allows to specify which (non-local) memory locations can
be modified by the function (and, consequently, which cannot

1 /*@
2 requires \valid(a) ∧ \valid(b);
3 requires \separated(a,b);
4 assigns *a, *b;
5 ensures *a == \old(*b) ∧ *b == \old(*a);
6 */
7 void swap(int *a, int *b){
8 int tmp = *a ; *a = *b ; *b = tmp ;
9 }

10

11 int main(){
12 int x = 2;
13 int y = 4;
14 swap(&x, &y);
15 //@ assert x == 4 ∧ y = 2 ;
16 }

Fig. 4. Example of an ACSL specification of the swap function

be modified).
Function contracts, as well as other ACSL specifications,

are added into a C file as code annotations, i.e. special
comments started with ”/*@” and closed with ”*/”. Figure 4
illustrates the use of ACSL to specify a swap function. The first
requires clause (line 2) indicates that a and b must be valid
pointers, that is to say, pointers to memory regions that can be
accessed both in reading and writing. The second requires
clause (line 3) expresses that the pointers must point to two
non-overlapping memory regions. The assigns clause (line
4) lists the memory locations that can be modified — here, the
locations referred to by a and b. Finally, the ensures clause
(line 5) indicates that after the execution of the function, *a
will be equal to the old value of *b (that is, its value before
the execution of the function) and vice-versa.

B. Some Simple Examples

Once the function contracts have been expressed, deductive
verification with FRAMA-C/WP can be used to prove that:

• each function respects its contract,
• each call to a function satisfies the precondition before

the call.

It relies on the weakest-precondition calculus [10]. In our
example, we can run WP using the command:

frama-c main.c -wp

that will automatically prove that the swap function correctly
implements the specified contract, as well as that the call to the
function on line 14 in function main respects the precondition
of the function.

The ACSL keyword assert introduces an assertion, i.e. a
property that must be checked at a particular program point.
Here, it is used to deduce the fact that the values are indeed
swapped after the call to the function.

However, that does not prove that the program cannot fail
at runtime, since we only proved that the program respects
the specification we have written. We still have to prove that



1 /*@
2 ensures \result ≥ a ∧ \result ≥ b ;
3 */
4 int max(int a, int b){
5 return (a ≥ b) ? a : b ;
6 }
7

8 extern int x ;
9

10 int main(){
11 x = 3;
12 int r = max(4, 2);
13 //@ assert r == 4 ;
14 //@ assert x == 3 ;
15 }

Fig. 5. Imprecise specification for the max function

there are no runtime errors. We can perform this additional
verification using a command line:

frama-c main.c -wp -then -wp-rte -wp

That will first prove that the program respects the specification,
and then generate the assertions to prevent runtime errors
and prove that they are satisfied. Note that we could directly
verify both of these aspects at the same time but it is a
better practice to first focus on the contracts that generally
do not need the assertions about runtime errors to be proven.
Thus, adding them directly could sometimes “pollute” the
proof obligations provided to the automatic solvers (that would
receive both the functional specification and the added runtime
errors annotations). As a result, that could make the proof
less efficient and sometimes report a provable property as
unproven.

While WP can prove that a program respects a specification,
this specification has to be carefully written. For example,
Figure 5 illustrates an example of a valid, yet not precise,
specification for the max function. The \result keyword is
used to refer to the value returned by the function.

The max function can be proved to correctly implement
the specification that has been stated. However the assertion
on line 13 will not be proved. The postcondition provides the
information that the returned value is greater or equal to both
a and b, but it does not state that the result is equal to one of
them. We have to add another ensures clause:

ensures \result == a ∨ \result == b ;

However, it is still not precise enough and does not allow
WP to prove the assertion on line 14. Indeed, the assigns
clause is not provided, so the function is just assumed to assign
any memory location. Here, the function does not assign any
memory location, so the assigns \nothing clause can be
added to provide the right specification. With this specification,
both assertions will be proved by WP.

1 /*@
2 requires 0 ≤ len;
3 requires \valid(a + (0 .. len-1));
4 assigns a[0 .. len-1];
5 ensures ∀ Z i ; 0 ≤ i < len ⇒ a[i] == 0;
6 */
7 void reset_array(int* a, int len){
8 /*@
9 loop invariant 0 ≤ i ≤ len ;

10 loop invariant ∀ Z j; 0 ≤ j < i ⇒
11 a[j] == 0 ;
12 loop assigns i, a[0 .. len-1];
13 loop variant len - i ;
14 */
15 for(int i = 0 ; i < len ; ++i){
16 a[i] = 0 ;
17 }
18 }

Fig. 6. The annotated reset_array function

C. Loop Contracts

While EVA can analyze loops automatically without in-
tervention of the user, it is not the case for WP. Proving a
program that comprises loops requires the user to provide a
loop invariant for each loop. A loop invariant is a property
that is true before and after each iteration of the loop.

The notion of invariant is illustrated with the
reset_array function in Figure 6. In the requires
clause on line 3 we use the syntax a + (0 .. len-1) that
means all pointers between a+0 and a+len-1 (included).
The postcondition on line 5 states that all elements of the
array between 0 and the end are 0, while line 4 indicates that
all array elements can be assigned.

The invariant is introduced using the loop invariant
keyword. Here, a first invariant property (line 9) of the loop
is the fact that the value of i is comprised between 0 and the
included length of the array. For a loop invariant, WP generates
two proofs obligations, that it is initially true and preserved:

• the property must be true at the beginning of the loop,
• provided that the property is true before, it must still be

true after executing an iteration of the loop.
So here, it will generate a first proof obligation to check

that 0 is comprised between 0 and the array length, which
is trivially true, and a second one to check that when
0 ≤ i ≤ len holds before an iteration, it holds after. That
is true because:

• if i == len, the body of the loop is not executed so
the property holds,

• if 0 ≤ i < len, since we only increment i, we have
1 ≤ i ≤ len after the body, and the property holds
as well.

This first invariant is not enough to be able to prove the
postcondition of the function. When WP tries to prove the
proof obligation that is related to the postcondition of a
function containing a loop, it does not analyze the body of
the loop, but only relies on the loop invariant. That is why



1 int i = 42;
2 /*@
3 loop invariant 0 ≤ i ≤ 42 ;
4 loop assigns i ;
5 loop variant i ;
6 */
7 while(i > 0){
8 i = i - ((rand()%i)+1) ;
9 }

Fig. 7. A loop variant that is not the number of remaining iterations

we have to specify an invariant that will allow to deduce the
property we want to prove about the function. Typically, it
specifies the information that has been ensured by the loop so
far.

Here, the goal is to show that at the end of the execution of
the function, each cell of the array a has been set to 0 (line 5).
This property is established by the function by successively
writing 0 in each cell. Therefore, the information we know
after an iteration is which cells have been visited and set to 0
so far. So, the second important invariant (line 10) is:

∀ Z j; 0 ≤ j < i ⇒ a[j] == 0

One can easily verify that this invariant is established and
maintained by the loop. With this loop invariant, the tool can
prove the postcondition. Indeed, the combination of the first
invariant and the negation of the loop condition implies that
i == len and therefore, by the second invariant, we get
the postcondition.

In order to prove the assigns clause of the function
(line 4), we also have to annotate the loop with assignment
information. It is introduced with a loop assigns clause.
While local variables are not required in the assigns clause
of a function, it is necessary to consider them in the case of
the loop assigns clause, since the loop contract is the
only information WP has about the loop. Without this clause,
it would not be possible to prove the postcondition because it
would not be possible to prove that len has not been modified
during the execution of the loop. Of course, it is possible
to provide this property as a loop invariant but the loop
assigns clause is meant to do this for all non-modified
variables at the same time. In this loop, the assigned memory
location are i (which is incremented at each iteration), and
all array elements of a at indices between 0 and len - 1,
leading to the loop assigns clause on line 12.

Finally, the loop variant clause (line 12) allows the
tool to prove that a loop terminates. A loop variant is an
expression that must be positive whenever an iteration starts,
and strictly decreasing after each execution of the body of
the loop. From a loop variant clause, WP generates two proof
obligations. First, it requires to prove that the value is indeed
positive, second, that it is a decreasing value when the body
of the loop is executed. Here, len - i is positive or nul
because i ≤ len, and it is easy to prove that this value is
decreasing because len - (i+1) is less than len - i.

1 /*@
2 requires 0 ≤ N ≤ 1000000000;
3 assigns \nothing;
4 ensures \result * \result ≤ N ;
5 ensures N < (\result+1) * (\result+1);
6 */
7 int root(int N){
8 int R = 0;
9 /*@

10 loop invariant 0 ≤ R * R ≤ N;
11 loop assigns R;
12 loop variant N-R;
13 */
14 while(((R+1)*(R+1)) ≤ N) {
15 R = R + 1;
16 }
17 return R;
18 }

Fig. 8. The specified root function

The loop variant can be seen as an upper bound on the
number of remaining loop iterations. However it does not
necessarily express the exact number of remaining iterations,
as it does in the reset_array example. For example, in
Figure 7, on line 5, i is a correct variant of the loop: it is
indeed positive and decreasing, however it is not necessarily
the number of remaining iterations since the loop can end at
the first iteration if rand()%i can be 41.

Consider, again, the integer square root example (cf. Fig-
ure 2). We assume here that N is less or equal to 1,000,000,000
to avoid overflows on line 14. This example contains non-
linear expressions, and EVA was not able to prove the absence
of runtime errors automatically without unrolling the loop.
It can be done by WP with the specification illustrated by
Figures 8 and 13. Note that the first part of the postcondition
(line 4) is guaranteed by the invariant (line 10) and that the
second part of the postcondition (line 5) is guaranteed by the
condition of the loop (line 14).

D. A Real-Life Example

During the tutorial, we specify and prove a real-life ex-
ample, a function extracted from the memory management
module of Contiki: the memory allocation function, that is
shown in Figure 9. In Contiki, memory blocks are taken in
pre-allocated memory regions. These regions are associated to
a memb structure. This structure defines 4 fields:

• the size field represents the size of each memory block
in the region (and will be the size of a memory block
that is returned by an allocation),

• the num field represents the number of blocks in the
region,

• the field count is an array of num values, whose cells
indicate if the corresponding block is free or not,

• the field mem points to a memory region whose size is
size * num.

The behavior of the memory allocation function is simple:
when it is called, it iterates over the blocks to determine if one



1 struct memb {
2 unsigned short size;
3 unsigned short num;
4 char *count;
5 void *mem;
6 };
7

8 void *
9 memb_alloc(struct memb *m)

10 {
11 int i;
12

13 for(i = 0; i < m->num; ++i) {
14 if(m->count[i] == 0) {
15 m->count[i] = 1 ;
16 int loc = i * m->size ;
17 return (void *)((char *)m->mem + loc);
18 }
19 }
20

21 return NULL;
22 }

Fig. 9. The MEMB allocation function

of them is free. If such a block is found, the corresponding cell
in count is marked as a busy block, and the corresponding
address of the block is returned. If the function cannot find a
free block, it returns NULL.

In order to prove this function, it is necessary to express
the invariant of the data structure, that basically states that the
memory blocks are valid with the right sizes. Then, two cases
can be distinguished: either there exists an available block or
not. In the first case, we have to show that the function has
indeed allocated a block, that all previously allocated blocks
are still allocated and that the block we allocated is not one of
them. In the second case, we have to show that the function
has not modified the data structure.

IV. RUNTIME VERIFICATION USING E-ACSL2C

FRAMA-C was initially designed as a static analysis plat-
form, but it was later extended with plugins for dynamic anal-
ysis. One of these plugins is E-ACSL, a runtime verification
tool.

E-ACSL supports runtime assertion checking [11]. Asser-
tions are very convenient for detecting errors and providing
information about their locations. It is the case even when
such an error does not result in a failure during execution.

In FRAMA-C, E-ACSL is both the name of the assertion
language and the name of a plugin that generates C code to
check these assertions at runtime. For the sake of clarity from
now on we will use E-ACSL only for the language, and E-
ACSL2C for the plugin.

E-ACSL is a subset of ACSL: the specifications written in
this subset can therefore be used both by WP and E-ACSL2C.
WP tries to prove the correctness of these assertions statically
using automated provers, while E-ACSL2C is used to translate
these assertions into C code that can then be executed. In this
case the assertions are checked dynamically.

1 int main(void){
2 f(42);
3 f(0);
4 return 0;
5 }

Fig. 10. A program calling f of Figure 1

A. Some Simple Examples

Let us first consider the programs of Figure 1. It is possible
to check the additional assertion assert sum 6= 0; (added
before Line 10) when f is called in the main function of
Figure 10.

Assuming the file main.c contains both one of the defini-
tions of f of Figure 1 and the main of Figure 10 the following
command

frama-c -e-acsl main.c -then-last \
-print -ocode monitored_main.c

generates a file monitored_main.c where the assertion
assert sum 6= 0; has been converted to C executable
code. In particular this file contains, after this assertion, the
following code:

e_acsl_assert(sum 6= 0, "Assertion", "f",
"sum 6= 0", 10);

This can be considered as an evolved version of the C
assert macro. This function checks the boolean expression
sum 6= 0, as the C assert macro does. In addition, if the
expression is false it prints the kind of E-ACSL annotation
this checks comes from (here an assertion). It also prints the
function in which this assertion is located (here f), a string
representing the condition itself (here the string "sum 6=
0"), and finally the line of the source code where the E-ACSL
annotation is (in this case 10).

Compiling monitored_main.c requires several li-
braries, but FRAMA-C provides a script to easily generate and
compile such a file. With the command

e-acsl-gcc.sh main.c -c -O monitored_main

an executable file monitored_main.e-acsl is generated.
If executed, for function f of Figure 1a, we obtain:

Assertion failed at line 10 in function f.
The failing predicate is:
sum != 0.
Aborted (core dumped)

If main.c contains function f of Figure 1b instead, there is
no output as both calls to f are correct.

The second example illustrates two features of E-ACSL2C:
function contracts and segmentation faults. Figure 11 presents
one function of the list API of Contiki: list_init. The
contract we give here is partial: we just require as a precondi-
tion that its argument is a valid pointer, and that the function
assigns the dereferencement of this pointer. The main function
does not contain any assertion, however as list_init has
a contract, the precondition is checked at each call. The first



1 #include "stdlib.h"
2

3 struct list {
4 struct list *next;
5 int value;
6 };
7

8 /*@
9 requires \valid(list);

10 assigns *list;
11 */
12 void list_init(struct list ** list) {
13 *list = NULL;
14 }
15

16 int main(void){
17 struct list ** l = malloc(sizeof(void *));
18 list_init(l);
19 free(l);
20 list_init(l);
21 }

Fig. 11. The init_list Function

call is correct, but after Line 19 the pointer l is dangling, and
the verification of the precondition for the second call fails:

Precondition failed at line 8 in function
list_init.

The failing predicate is:
\valid(list).
Aborted (core dumped)

Handling memory related constructs such as \valid re-
quires to query the program memory at runtime. Queries
include checking whether some data has been fully initialized,
getting the length of a memory block, or getting the offset of
a pointer from its base address.

In order to support this kind of queries, E-ACSL2C
comes with a dedicated memory runtime library [12], [13].
e-acsl-gcc.sh takes care of linking this library against the
generated code. This code records program memory modifica-
tions in a dedicated data structure, which can then be queried
to evaluate memory-related E-ACSL constructs.

This instrumentation is expensive. In order to limit it, E-
ACSL2C implements static analyses to over-approximate the
memory locations to be monitored [14]. It is then unnecessary
to track all the other locations.

B. E-ACSL Specification Language

In Section III we mentioned that the ACSL language con-
tains basically first order logic formulae composed of pure C
expressions as well as pure logic types (mathematical integers,
reals, sets, lists, . . . ) and some built-in predicates. In addition,
as we have seen, it is possible to define logical functions,
but also predicates. Logicial functions can be defined in an
axiomatic way, and predicates can be defined inductively.

Axiomatic functions and inductively defined predicates are
not part of E-ACSL. The pure logical types are part of E-
ACSL, however most tools only support mathematical integers.

In E-ACSL2C they are translated into C using the GNU Multi-
Precision library, when it is necessary. Finally, all quantifica-
tions in E-ACSL should be bounded, as the formula of Line
5 in Figure 6.

E-ACSL2C currently ignores logical functions and predi-
cates in annotations.

C. A Real-Life Example

During the tutorial, we will consider the following scenario:
some API has been verified using WP, and is used to imple-
ment applications. Verifying these applications using WP is
time consuming, but we would like at least to check that the
API calls are made correctly using runtime assertion checking.
This allows to ensure, at least for the considered test suite, that
the verified API is not called on inadmissible inputs for which
its behavior was neither specified nor verified.

We will consider case studies similar to the one presented
in Figure 12, where list_chop is a function of the linked
list API of Contiki. As this API also contains a function
int length(struct list **), we assume that the
maximal length for a list is INT_MAX. The tail recursive
logical function length_aux takes that into account to stop
the recursion if its accumulative parameter has reached the
limit. In this case, even if there is still a next element, the
function stops and returns -1. The length function simply
calls length_aux with an initial accumulative value of 0.

The main function first builds a circular list. However
we will see that, due to the design of the logical function
length_aux, the runtime checking shows that the precondi-
tion 0 ≤ length(l) is not satisfied for the call on line 56.

V. CONCLUSION AND FURTHER READING

A. Concluding Remarks

With the expansion of connected devices in the modern
world, formal verification of IoT software attracts a growing
interest. The goal of this tutorial is to show how formal
verification can be applied to IoT software using the FRAMA-
C verification platform and its plugins for value analysis,
deductive verification and runtime assertion checking.

Value analysis allows users to prove the absence of runtime
errors and does not require annotations. It relies on an over-
approximation and can therefore report false alarms (or false
positives). They can sometimes be eliminated by increasing
the precision of the analysis, but this can lead to making the
analysis much slower.

Value analysis is, however, often unable to verify more
complex functional properties or deal with complex (e.g. non-
linear) programs. When it is necessary, deductive verification
can be used to treat them and to formally prove that a program
respects its formal specification. It proceeds in a modular way
and requires a carefully annotated program. When successful,
it ensures that each function respects its specification, and
function calls respect the corresponding preconditions.

Unfortunately, in a big software product, formal specifica-
tion and deductive verification often remain partial, done for
the most critical parts of the code. To take benefit from a partial



1 #include "limits.h"
2 #include "stdlib.h"
3

4 struct list
5 {
6 struct list *next;
7 int value;
8 };
9

10 /*@
11 logic int length_aux{L}(struct list * l,
12 int n)=
13 n < (int)0 ? ((int)-1) :
14 l == NULL ? n :
15 n < INT_MAX ?
16 length_aux(l->next, (int)(1+n)) :
17 ((int)-1);
18

19 logic int length{L}(struct list * l) =
20 length_aux(l, (int)0);
21 */
22

23 /*@
24 requires \valid(list);
25 requires 0 ≤ length(*list);
26 */
27 struct list * list_chop(struct list ** list){
28 struct list *l, *r;
29

30 if(*list == NULL) {
31 return NULL;
32 }
33

34 if((*list)->next == NULL) {
35 l = *list;
36 *list = NULL;
37 return l;
38 }
39

40 l = *list;
41 while(l->next->next 6= NULL){
42 l = l->next;
43 }
44 r = l->next;
45 l->next = NULL;
46 return r;
47 }
48

49 int main(void){
50 struct list node;
51 node.value = 1;
52 node.next = &node;
53

54 struct list * l = &node;
55

56 l = list_chop(&l);
57 }

Fig. 12. The list_chop Function

formal specification (of a library, module, etc.), the user can
use runtime verification of the provided specifications during
testing. In that case, a complete specification is not required
for the whole project, and violations of the provided (even
partial) specifications can be detected during the execution of
a test suite.

We have demonstrated how these techniques can be applied
using FRAMA-C and illustrated them on real-life examples
extracted from IoT software.

B. Further Reading

1) On FRAMA-C verification platform: The first author
wrote a longer tutorial focused on WP plugin [15]. Burghardt
and Gerlach authored and regularly update their book “ACSL
by Example” [16] giving many interesting examples of spec-
ification in ACSL. Several other tutorial papers present vari-
ous analysis techniques using FRAMA-C: deductive verifica-
tion [17], runtime verification [18], [19], test generation [20]
and analysis combinations [21]. Finally, user manuals for
FRAMA-C and its different analyzers can be found on the
website http://frama-c.com.

2) On FRAMA-C Applied to IoT Verification: Several mod-
ules of Contiki have been verified with FRAMA-C:

• a memory allocation module [3],
• a linked list module [4], [22],
• the AES-CCM* modules [5].

Other verification projects are in progress.

REFERENCES

[1] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-C: A software analysis perspective,” Formal Asp. Comput.,
vol. 27, no. 3, pp. 573–609, 2015.

[2] P. Baudin, P. Cuoq, J. C. Filliâtre, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI/ISO C Specification Language. [Online].
Available: http://frama-c.com/acsl.html

[3] F. Mangano, S. Duquennoy, and N. Kosmatov, “A memory allocation
module of Contiki formally verified with Frama-C. A case study,” in
11th International Conference on Risks and Security of Internet and
Systems (CRiSIS 2016), ser. LNCS, vol. 10158. Springer, 2016, pp.
114–120.

[4] A. Blanchard, N. Kosmatov, and F. Loulergue, “Ghosts for lists: A
critical module of contiki verified in Frama-C,” in Nasa Formal Methods,
ser. LNCS, vol. 10811. Springer, 2018.

[5] A. Peyrard, S. Duquennoy, N. Kosmatov, and S. Raza, “Towards
formal verification of Contiki: Analysis of the AES–CCM* modules
with Frama-C,” in 2nd International Workshop on Recent Advances in
Secure Management of Data and Resources in the IoT (RED-IoT 2017)
co-located with the International Conference on Embedded Wireless
Systems and Networks (EWSN 2018). ACM, 2018, to appear.

[6] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - A lightweight and
flexible operating system for tiny networked sensors,” in Proc. of the
29th Annual IEEE Conference on Local Computer Networks (LCN
2004). IEEE Computer Society, 2004, pp. 455–462.

[7] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proc. of the 4th ACM Symposium on Principles of
Programming Languages (POPL 1977). ACM, 1977, pp. 238–252.

[8] D. Bühler, P. Cuoq, and B. Yakobowski, EVA - The Evolved Value
Analysis plug-in. [Online]. Available: http://frama-c.com/download/
frama-c-value-analysis.pdf

[9] L. Mauborgne and X. Rival, “Trace partitioning in abstract interpreta-
tion based static analyzers,” in Proc. of the European Symposium on
Programming (ESOP 2005), ser. LNCS, vol. 3444. Springer, 2005, pp.
5–20.



Fig. 13. The root Function in Frama-C GUI

[10] E. W. Dijkstra, “A constructive approach to program correctness,” BIT
Numerical Mathematics, vol. Springer, 1968.

[11] L. A. Clarke and D. S. Rosenblum, “A historical perspective on runtime
assertion checking in software development,” SIGSOFT Softw. Eng.
Notes, vol. 31, no. 3, pp. 25–37, May 2006.

[12] N. Kosmatov, G. Petiot, and J. Signoles, “An optimized memory
monitoring for runtime assertion checking of C programs,” in Proc. of
the 4th International Conference on Runtime Verification (RV 2013), ser.
LNCS, vol. 8174. Springer, 2013, pp. 167–182.

[13] K. Vorobyov, J. Signoles, and N. Kosmatov, “Shadow state encoding for
efficient monitoring of block-level properties,” in Proc. of the 2017 ACM
SIGPLAN International Symposium on Memory Management (ISMM
2017). ACM, Jun. 2017, pp. 47–58.

[14] A. Jakobsson, N. Kosmatov, and J. Signoles, “Fast as a shadow,
expressive as a tree: Optimized memory monitoring for C,” Sci. Comput.
Program., vol. 132, pp. 226–246, 2016, special Issue, Revised Selected
Papers of SAC-SVT 2015,.

[15] A. Blanchard, “Introduction to C program proof using Frama-C
and its WP plugin,” december 2017. [Online]. Available: https:
//allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

[16] J. Burghardt and J. Gerlach, “ACSL by example,” 2018. [Online].
Available: https://github.com/fraunhoferfokus/acsl-by-example

[17] N. Kosmatov, V. Prevosto, and J. Signoles, “A lesson on proof of
programs with Frama-C. invited tutorial paper,” in Proc. of the 7th
International Conference on Tests and Proofs (TAP 2013), ser. LNCS,
vol. 7942. Springer, Jun. 2013, pp. 168–177.

[18] N. Kosmatov and J. Signoles, “A lesson on runtime assertion checking
with Frama-C,” in Proc. of the 4th International Conference on Runtime
Verification (RV 2013), ser. LNCS, vol. 8174. Springer, 2013, pp. 386–
399.

[19] ——, “Runtime assertion checking and its combinations with static and
dynamic analyses – tutorial synopsis,” in Proc. of the 8th International
Conference on Tests and Proofs (TAP 2014), Held as Part of STAF 2014,
ser. LNCS, vol. 8570. Springer, 2014, pp. 165–168.

[20] N. Kosmatov, N. Williams, B. Botella, M. Roger, and O. Chebaro, “A
lesson on structural testing with PathCrawler-online.com,” in Proc. of
the 6th International Conference on Tests and Proofs (TAP 2012), ser.
LNCS, vol. 7305. Springer, May 2012, pp. 169–175.

[21] N. Kosmatov and J. Signoles, “Frama-C, A collaborative framework for
C code verification: Tutorial synopsis,” in Proc. of the 7th International
Conference on Runtime Verification (RV 2016), ser. LNCS, vol. 10012.
Springer, Sep. 2016, pp. 92–115.

[22] F. Loulergue, A. Blanchard, and N. Kosmatov, “Ghosts for lists: from
axiomatic to executable specifications,” in Proc. of the 12th International
Conference on Tests and Proofs (TAP 2018), Held as Part of STAF 2018,
ser. LNCS, vol. 10889. Springer, Jun. 2018, to appear.


