
N° 1.8

A. Blanchard – N. Kosmatov – M. Lemerre – F. Loulergue

Paging System of the Anaxagoros Hypervisor Formally
Verified with Frama-C: A Case Study

Cloud Hypervisors

Hypervisors are used in clouds to virtualize OS,
allowing to share resources between users.

They are composed of three main modules that
have to ensure the correct isolation of client tasks.
Their formal verification can increase our
confidence in security and reliability of the cloud.

The paging system manages the virtual
memory, ensuring that processes only
perform legal operations on it. We analyse
the algorithm responsible for modifying the
memory tree.

It is part of Anaxagoros, an hypervisor
developped at CEA LIST, which is designed
to accept non-blocking simultaneous
kernel calls from many processes.

We prove the system invariant by creating a
simulation of parallel executions of this
algorithm.

Simplified Source Code
#define NOF 2048//nb of frames
#define MAX 256 //max number of mappings
uint mappings[NOF];

int set_entry(int fn, int idx, int new){

 int c_n = mappings[new];
 if(c_n >= MAX) return 1;
 if(!CAS(&mappings[new], c_n, c_n+1))
 return 1;

 page_t p = get_frame(fn);
 uint old = exchange(&p[idx], new);

 if(!old) return 0;
 fetch_and_sub(&mappings[old], 1);

 return 0;
}

Summary

We prove that the algorithm is valid in a
concurrent context. The simulation technique
has a lack of scalability and modularity, but:

✔ allows analysis of parallel code with a tool
that does not natively support it,

✔ is inexpensive compared to the effort of
specification,

✔ It is mostly automatic,
✔ It does the job !

Hypervisor
Paging
System

Inter-Process
Communication

Process
Management

OS OS OS OS OS

Virtual Memory

Paging System

Process 0 Process 1 Process N

The Paging System of Anaxagoros

Atomic instructions are modeled
by functions parameterized by
the id of the thread we make
advance:

void read_map_new(uint th){
 c_n[th] = mappings[new[th]];
 pct[th] = 2;
}

void FAS_map_old(uint th){
 mappings[old[th]]--;
 //@ghost ref[th] = 0;
 pct[th] = 0;
}

Execution context is modeled
by arrays associating to each
thread id the state of its local
variables and its program
counter:

#define THD 512 //max nb thread

uint fn [THD];
uint idx[THD];
uint new[THD];
uint c_n[THD];
uint old[THD];

uint pct[THD];

Finally, we model concurrent
execution by an infinite loop that
executes a step of a random
thread, and start again:
while(true){
 int th = choose_a_thread();

 switch(pct[th]){
 case 0 : gen_args(th); break;
 case 1 : read_map_new(th); break;
 case 2 : test_map_new(th); break;
 case 3 : CAS_map_new(th); break;
 case 4 : EXCH_entry(th); break;
 case 5 : test_map_old(th); break;
 case 6 : FAS_map_old(th); break;
 }
}

Simulation of Concurrent Executions

We equip the simulation loop and every atomic instruction function
with the global invariant we want to verify by adding ANSI C
Specification Language (ACSL) annotations in the source code.

We use the Frama-C framework with its (WP) Weakest
Precondition plugin to generate proof obligations that are mostly
discharged by SMT solvers.

As some of them need complex induction proofs, we state them in
auxiliary lemmas that we prove them with the Coq proof assitant.

Specification and Proof of the Simulation

Reference

Blanchard, A., Kosmatov, N., Lemerre, M., Loulergue, F. : Paging System of Anaxagoros Hypervisor Formally Verified with Frama-C: A Case Study. Submitted.

Contacts :

- Allan BLANCHARD, CEA LIST/LIFO, allan.blanchard@cea.fr

- Nikolai KOSMATOV, CEA LIST, nikolai.kosmatov@cea.fr

- Matthieu LEMERRE, CEA LIST, matthieu.lemerre@cea.fr

- Frédéric LOULERGUE, LIFO, frederic.loulergue@univ-orleans.fr

mailto:allan.blanchard@cea.fr
mailto:nikolai.kosmatov@cea.fr
mailto:matthieu.lemerre@cea.fr

	Diapo 1

